
Context-Aware Lattice based Filler approach for Key
Word Spotting in Handwritten Documents

Alejandro Héctor Toselli
Universitat Politècnica de València

Valencia, Spain
Email: ahector@prhlt.upv.es

Joan Puigcerver
Universitat Politècnica de València

Valencia, Spain
Email: joapuipe@upv.es

Enrique Vidal
Universitat Politècnica de València

Valencia, Spain
Email: evidal@iti.upv.es

Abstract—The so-called filler or garbage Hidden Markov
Models (HMM-Filler) are among the most widely used models
for lexicon-free, query by string key word spotting (KWS) in
the fields of speech recognition and (lately) handwritten text
recognition. However, it has important drawbacks. First, the
keyword-specific HMM Viterbi decoding process needed to obtain
the confidence scores of each spotted word involves a large
computational cost. Second, in its traditional conception, the
model does not take into account any context information –
and more recent works where simple character bi-gram context
is used show that not only the computational cost becomes
even larger, but also the required keyword-specific language
model becomes quite intricate to build. In a previous work
we introduced KWS methods based on character lattices which
proved very much simpler and faster than the traditional HMM-
Filler, while providing practically identical results. Here we
extend our previous work by using context-aware character
lattices obtained by means of Viterbi decoding with high-order
character N -gram models. Experimental results show that, as
compared with a direct 2-gram HMM-filler implementation, the
proposed approach requires between one and two orders of
magnitude less query computing time. Moreover, for the first
time in the field of handwritten text KWS, Filler-based results
for N -grams up to N = 6 are reported, clearly showing a great
impact of context on precision-recall performance.

I. INTRODUCTION

In recent years, large quantities of historical handwritten
documents are being scanned into digital images, which are
then made available through web sites of libraries and archives
all over the world. Despite this, the wealth of informa-
tion conveyed by the text captured in these images remains
largely inaccessible (no plain text, difficult to read even for
researchers). To exploit and make profit of such a mass-
digitization, information retrieval approaches are needed to
allow the users to search accurately and efficiently for textual
contents of such handwritten documents.

Aiming at this goal, Keyword spotting (KWS) methods
are being proposed, from which one of the most popular is
known as “HMM-Filler” [1], [2]. In this approach, a filler (or
“garbage”) model, along with a word-specific model for each
query word, are built using character hidden Markov models
(HMMs). HMM-Filler is used for line-oriented KWS, where
whole text line images, without any kind of segmentation into
words or characters, are analyzed to determine the degree of
confidence that a given keyword appears in the image. One
of the attractive feature of this approach is that it is “lexicon-
free”; that is, it does not require any predefined lexicon as,

for example, the case of the index-based method described
in [3]. On the other side, the large computing time entailed
by word-specific Viterbi decoding, which is needed for each
query, becomes an important issue. Another major drawback
is undoubtedly the lack of context-information for driving the
search process, which significantly hinders its performance
with respect to context-aware approaches such as [3].

In order to overcome the large computing time problem,
an alternative method based on character lattices (CLs) was
introduced in [4] to compute the (highly-expensive) word-
specific probabilities. The resulting system was very much
faster than the traditional HMM-Filler, while preserving almost
identical precision-recall performance. On the other hand, the
lack of context-information of the HMM-Filler was addressed
in [5] by using character 1-gram and 2-gram models; however,
the high computing cost problem persists. Moreover, character
2-grams can only provide very limited context (as compared
for instance with word 2-grams) and using larger context
only makes computing issues even worse, since cost can
asymptotically grow exponentially with the N -gram order. It
is also worth nothing that building word-specific character N -
gram models becomes quite a complex task for N > 1 [5].

This paper follows the work presented in [5], but using the
CL-based approach introduced in [4]. To this end, we generate
CLs for increasing N -gram orders, on which we perform the
query search according to [4]. A major contribution of the
paper, which has been possible thanks to the great efficiency
of CL-based computing, is the use of context beyond that
provided by 2-grams. Results achieved with up to 6-grams
clearly confirm the expected high positive impact of increasing
context-information on the KWS precision-recall performance.

The rest of the paper is organized as follows. The next
section overviews basic concepts of HMM-based handwritten
text recognition, CLs, HMM-Filler and its CL-based approach.
Evaluation measures, dataset, experimental set-up and results
are presented/reported in section III. Finally, section IV sum-
marizes the work presented and draws conclusions.

II. CL-BASED KWS AND RELATED FRAMEWORK

This section reviews the basics of HMM-based handwriting
recognition and the CLs generated as a byproduct. It includes
a brief overview of lattice re-scoring using higher order N -
gram, which is employed to obtain CLs for context beyond
that provided by 2-grams. Finally, the HMM-Filler framework
and its CL-based counterpart are outlined.

A. HMM-based Handwriting Recognition

Both the HMM-Filler and its CL-based approach rely on
a segmentation-free, HMM-based character recognizer. Rec-
ognizers of this kind accept as input a given handwritten text
line image, represented as a sequence of D-dimensional feature
vectors x = ~x1, ~x2, . . . , ~xn, ~xi ∈ <D and find a most likely
character sequence, ĉ = ĉ1ĉ2 . . . ĉL, ĉi∈Σ (the character set):

ĉ = arg max
c

P (c | x) = arg max
c

p(x | c)P (c) (1)

The score associated with ĉ (called “Viterbi score”) is:

S(x) = max
c

p(x | c)P (c) (2)

The conditional density p(x | c) is approximated by previously
trained morphological character HMMs, while the prior P (c)
is given by a character-level N -gram language model.

Eq. (1–2) are commonly solved by means of Viterbi decod-
ing [6]. As a byproduct, a huge set of most likely character se-
quence hypotheses, along with the corresponding segmentation
and probabilistic information, can be obtained and represented
in the form of a CL. CLs are the character-level versions of
the better known “word-graphs” [7].

B. Character-Lattice Basics

A CL of a vector sequence x is a weighted directed acyclic
graph with a finite set of nodes Q, including an initial node
qI ∈ Q and a set of final nodes F ⊆ (Q − qI). Each
node q is associated with a horizontal position of x, given by
t(q)∈ [0, n], where n is the length of x. For an edge (q′, q)∈E
(q′ 6= q, q′ 6∈F, q 6=qI), c = ω(q′, q) is its associated character
and s(q′, q) its score. The score is the product of the N -gram
probability for the character c, P (c), and the likelihood that
the segment ~xt(q′)+1, . . . , ~xt(q), represents an image of the
character ω(q′, q), as computed during Viterbi decoding of x.

A complete path, P , of a CL is a sequence of edges
(q′1, q1), (q′2, q2), . . . , (q′L, qL) such that q′1 =qI , qi =q′i+1, 1≤
i <L, qL ∈F . A complete path corresponds to a whole line
decoding hypothesis and its score is the product of the scores
of all its edges: S(P,x) =

∏L
i=1 s(q

′
i, qi).

The Viterbi score of x, S(x), is the maximum of the scores
of all complete CL paths. It can be easily and efficiently
obtained by Dynamic Programming:

S(x)
def
= max

P
S(P,x) = Φ(qI) = max

q∈F
Ψ(q)

where the forward (Ψ) and backward (Φ) partial path scores
are recursively defined as:

Ψ(q) = max
i:(qi,q)∈E

Ψ(qi) s(qi, q) if q 6=qI (3)

Φ(q) = max
j:(q,qj)∈E

s(q, qj) Φ(qj) if q 6∈F (4)

with Ψ(qI) = 1, and Φ(q) = 1 ∀q ∈ F . These equations
are similar to those used in the standard backward-forward
computations in word-graphs (see [7]).

C. Re-scoring CLs with higher order N -grams

In automatic speech and handwriting text recognition, it
is well known that the use of models with richer contextual
information generally leads to better decoding performance.
But also it is fairly certain that the corresponding decoding
process becomes computationally more expensive as the search
space grows exponentially with the context length (acoustic
triphones, N -gram language models with N > 2, etc.).

“Lattice re-scoring” (LR) [8] is one way to overcome this
computational bottleneck, provided that we want to keep the
decoding likelihoods obtained in the previous decoding process
(i.e. p(x | c)) and use a higher order N -gram (P (c) in Eq. (1)).
LR has proved to be a good approximation to the actual output
of a full decoding process with such a higher order N -gram
model.

In short, given a lattice obtained with a N ′-gram model
and a higher order N -gram, LR performs node duplication
to guarantee the uniqueness of the N -word contexts before
placing probabilities on transitions. For this reason, the final
re-scored lattice can be considerably larger than the original
one, depending mainly on the order of the N -gram model used
for re-scoring. In order to limit the size of the resulting lattice,
beam-search-like pruning techniques can be applied [9].

D. HMM-Filler Approach

In the HMM-Filler approach, character HMMs are used to
build both a “filler” model, F , and a keyword-specific model,
Kv , for each individual keyword v to be spotted. For the
classical HMM-Filler presented in [1], F is built by arranging
all the trained character HMMs in parallel with a loop-back and
the prior probabilities P (c) are not used. This model accounts
for any unrestricted sequence of characters. On the other hand,
Kv is constructed to model the exact character sequence of v,
surrounded by the space character and the same unrestricted
character sequences modeled by F .

For the contextual HMM-Filler [5], P (c) is given by an
N -gram model, F (see a 3-gram example in Fig. 1 top).
Building Kv for general N -gram is quite intrincate. As in
the classical approach, the topology has to deal with the
query word character sequence, v, delimited by optional space
characters and by the N -gram SFSAs, F . In addition, this
topology should also consider all query word sequence starting
and ending possibilities given by [1, N − 1]-gram SFSAs (see
Fig. 1 bottom).

In a preprocessing phase, F can be used once for all to
compute the Viterbi decoding score sf (x) (Eq. (2)) for each
line image x. Similarly, in the searching phase, for each
keyword v to be spotted and for each line image x, the Viterbi
score sv(x) is computed using the keyword-specific model Kv .
A spotting score S(v,x) is then defined as:

S(v,x)
def
=

log sv(x)− log sf (x)

Lv
(5)

where Lv is the length of v in number of characters. If
v is actually in the line image x, a matching is expected
with high (negative) values of S(v,x), upper bounded by
S(v,x) = 0. Note that unlike it has been done here, in [1],
[5] Lv is given directly in number of frames between the

s sa a

a s

s a

a

s
#

a #

s #

P(a|#)
P(#|ss)

P(s|#s)

P(a|ss)

P(a|#s)

P(s|sa)

P(s|ss)P(s|as)

P(#|as)P(s|#a)

P(a|#a)

P(s|aa)

P(a|as)

P(a|aa)

P(#|aa)

P(#|#a)

P(#|sa)

P(s|#)

P(#|#s)
P(a|sa)

a a a a

s a a s

a #

FILLER

a a# a
P(a|aa)

P(a|sa)

P(#|aa)

P(a|*s) P(*|as)

P(s|aa)

FILLER

P(a|#a) P(a|aa)

Fig. 1. Top: Simple character 3-gram filler model, F , for characters "a" and
"s" (blank space). Bottom: 3-gram keyword model, Kv , for v ="aaa".

word detected borders, resulting in a better spotting score for
the classical HMM-Filler (and the CL-based approach [4]:
AP=0.36), instead of the one reported in Fig. 2 (AP=0.35).
However, the proposed way to define Lv has proved to provide
better spotting results when using N -gram models.

As with the basic HMM-Filler model, both the preprocess-
ing phase and the search phase associated with each query re-
quire a Viterbi decoding process with a trellis size proportional
to the size of the filler (N -gram) model, F [4]. Therefore both
costs can grow (very) fast with N (asymptotically as |Σ|N).

E. CL-based KWS Score for Character Sequences

Let a sub-path e of a CL be defined as a sequence of con-
nected edges) of the form: e = (q′1, q1), (q′2, q2), . . . , (q′L, qL) :
qi = q′i+1, 1≤ i <L. The maximum score of a complete path
P which contains a sub-path e is denoted as ϕ(e,x). It can be
efficiently computed using the backward and forward partial
scores of Eq. (3–4):

ϕ(e,x)
def
= max
P:e∈P

S(P,x) = Ψ(q′1) ·
L∏

i=1

s(q′i, qi) · Φ(qL) (6)

where e ∈ P means that e is a sub-path of P . Given a character
sequence c̃, let S′(c̃,x) be the maximum score of a complete
path containing a sub-path e associated with c̃:

S′(c̃,x) = max
e:Ω(e)=c

ϕ(e,x) (7)

where Ω(e) is the character sequence c̃ ≡ c̃1, c̃2, . . . , c̃L
associated with e; that is, e = (q′1, q1), (q′2, q2), . . . , (q′L, qL),
ω(q′i, qi) = c̃i, 1 ≤ i ≤ L.

Assuming the CL is complete, if c̃ is the character sequence
of a word v to be spotted (including blank spaces) it can be
readily seen that S(x) = sf (x) and S′(c̃,x) = sv(x) (c.f.
Eq. (5)). Therefore,

S(c̃,x) =
logS′(c̃,x)− logS(x)

Lv
(8)

where Lv is the same length normalization as in Eq. (5).

As discussed in [4], the computational cost of this approach
is largely dominated by the cost of generating the filler (N -
gram) CL as a byproduct of Viterbi decoding each test line
image with the the filler (N -gram) model, F . As with the
traditional Filler-HMM approach, This is carried out in the

preprocessing phase; however, the extra work required to
producing the CLs makes this preprocessing cost significantly
larger than that of the traditional Viterbi-only approach. This is
largely compensated by the very light CL computing needed in
the search phase, which no longer requires dealing with long
line-image feature-vector sequences or large N -gram models.

III. EXPERIMENTS

To assess effectiveness and efficiency of the CL-based
KWS approach with higher order N -grams, several experi-
ments were carried out. Evaluation measures, dataset, experi-
mental setup and the results are presented next.

A. Evaluation Measures

The standard recall and interpolated precision mea-
sures [10] are used here. Interpolated precision is widely used
in the literature to avoid cases in which average precision (AP,
defined next) can be ill-defined. In addition, we employ another
popular scalar KWS assessment measure called average pre-
cision (AP) [11] which, actually, is the area under the Recall-
Precision curve.

B. Dataset

Experiments were carried out with the IAMDB dataset.
IAMDB is a publicly available, well known modern English
handwritten text corpus, compiled by the FKI-IAM Research
Group on the base of the Lancaster-Oslo/Bergen Corpus
(LOB). The last released version (3.0) is composed of 1 539
scanned text pages, handwritten by 657 different writers and
partitioned into writer-independent training, validation and test
sets. The line segmentation provided with the corpus [12] is
used here. Basic statistics appear in Table I.

TABLE I. BASIC STATISTICS OF THE IAMDB DATABASE AND ITS
PARTITION.

Training Validation Test Total

Running chars 269 270 39 318 39 130 347 718
Running words 47 615 7 291 7 197 62 103
Lines 6 161 920 929 8 010

Char set size 72 69 65 81
Lexicon size 7 778 2 442 2 488 9 809

C. Set of Keywords to be Spotted

In this work the same set of query words defined and
used in [1] is adopted. The main criterion was to consider as
keywords all the vocabulary words appearing in the IAMDB
training partition with exception of stop words which were all
discarded. It is important to remark that this query set differs
considerably from the one used in [5], a subset of it containing
only queries appearing at least once in any of the test line
images.

Thereby, the IAMDB query set consists of V = 3 421
words, including numeric expressions and a few symbols. It
is worth mentioning that, from these keywords, only 1 098
actually appear in the test line GTs. We say that these query
words are “pertinent”, whereas the remaining 2 323 words are
“not pertinent”. Clearly, spotting the non-pertinent words of
this query set make also things more challenging compared

with [5], since the system may erroneously find other similar
words and thereby, leading to important precision degradations.
On the other hand, some of the pertinent keywords appear more
than once in the GT of the test partition. Concretely, there are
1 925 pertinent keyword occurrences, representing around 26%
of the total number of running words in the GT of the test
images. Each of the 3 421 keywords is to be tested against all
the M =929 test lines. So the total number of query-line events
is M ·V = 3 178 109, from which only 1 916 are pertinent and
relevant. All this information is summed up in Table II.

TABLE II. FEATURES OF SELECTED KEYWORD SET

Total Rel/Pert

Line images (M) 929 855
Keywords (V) 3 421 1 098
Running pertinent keywords — 1 925
Line-query events (M ·V) 3 178 109 1 916

D. Experimental Set-up

IAMDB character HMMs were trained from the training
partition. In general, a left-to-right HMM was trained for each
of the elements appearing in the training text images, such as
lowercase and uppercase letters, symbols, blank spaces, etc.
Specific details of the image preprocessing, feature extraction
and the HMM training setup usually adopted for IAMDB
are described in [1]. The character HMM related parameters
were optimized on the validation data: number of states and
Gaussian densities per state.

In the preprocessing phase of the CL-based approach, the
required N -gram models for generating the corresponding
CLs, were trained from adequate external texts and smoothed
using the Kneser-Ney back-off technique [13]. In this case
as in [5], we have used the Lancaster-Oslo/Bergen corpus
(LOB) [14] to train the N -gram models. This text corpus
contains a variety of printed British English texts which, in
total, encompasses more than one million words. Since some
of these texts were employed to create the IAMDB itself, they
have been removed from the validation and test sets.

Once all the N -gram models had been trained, the CLs
of the validation and test lines were obtained using the HTK
Toolkit [9] for each N -gram model with 1 ≤ N ≤ 4, and
also for the traditional single “filler” model (without prior
probabilities). Since HTK can only decode directly using up to
2-gram models, we have resorted to re-scoring (see Sec. II-C
to obtain CLs for 3− and 4-grams. That is, a 3-gram CL
is obtained by re-scoreing the previous 2-gram CL with the
3-gram model and, in turn, a 4-gram CL by re-scoring the
previous 3-gram CL with the 4-gram model. However, by
applying HTK re-scoring beyond 4-grams, it was observed that
the character accuracy rate (CAR)1 computed on the decoded
hypotheses of the validation set began to degrade. Therefore,
in order to obtain results for 5- and 6-grams (Fig. 2) we used
CLs produced by another recognizer, iATROS [15], capable of
dealing with N -grams of order greater than 42.

1We assume that CAR is tight correlated with the KWS accuracy evaluation
measure AP. Using CAR for the validation process of CLs generated with
different N -gram orders (and related meta-parameters: GSF and CIP) results
faster than employing directly AP.

2iATROS is less efficient than the HTK decoder and, moreover, for N<5
iATROS CLs tend to produce slightly worse results than those obtained with
HTK. Therefore HTK+re-scoring was preferred for N < 5.

In addition, the two related language model parameters
grammar scale factor (GSF) and character insertion penalty
(CIP) were also tuned empirically on the validation set for an
optimum CAR value. Once these two parameter values have
been found, the final CL generation of the corresponding 929
test lines was carried out. It is important to remark that in order
to avoid procucing CLs of excessive size, this was limited
by setting the maximum input branching factor to 30 and by
applying beam-search pruning technique. Table III shows some
statistics of the resulting CLs obtained for the test line set.

TABLE III. STATISTICS OF THE IAMDB CLS. ALL THE FIGURES ARE
NUMBERS OF ELEMENTS, AVERAGED OVER ALL THE CLS. AVERAGE

branching factor (BF) PER NODE AND CHARACTER AS WELL AS character
accuracy rate (CAR(%)) ARE ALSO REPORTED.

RS Ord Nodes Edges BF Paths CAR(%)

HTK-recg
0 37 313 1 112 070 2.7 ∼10307 32.78
1 35 477 1 056 820 3.0 ∼10306 57.31
2 37 443 1 115 130 3.1 ∼10302 61.94

HTK-rscr 3 82 951 580 719 1.7 ∼10122 66.26
4 125 280 557 420 1.4 ∼1081 70.43

iATROS 5 202 977 588 493 1.8 ∼1042 73.04
6 111 235 228 739 1.4 ∼1026 74.54

Once all CLs have been generated, the preprocessing
phase ends with the corresponding forward-backward score
computation in each of them according to Eq. (3-4). In the
query phase, the character sequence scores, S′(c̃,x), were
computed for each keyword, v ≡ c̃, and line image, x. Finally,
the KWS scores S(c̃,x) were determined for all the keywords,
according to Eq. (8).

E. Results

Experiments were carried out with the IAMDB dataset
using the CL-based approach described in Sec. II-E for dif-
ferent CL sets produced using N -gram models of increasing
order: N ∈ [0, 6]. Fig. 2 plots the Average Precision (AP) in
function of the order of N -gram models employed to generated
CLs. As expected, the AP increases with the order of N -gram
models allowing to hold more context information in the final
obtained CLs. Furthermore, as can be seen in the plot of Fig.2,
we also have included the language model perplexity (PPL)
figure computed for each N -gram model order on the test
set, which reflects the quality of the text constraints imposed
by the different N -gram models. As can be observed, the
improvement in spotting performance is clearly correlated with
the reduction in perplexity, and thereby the used N -gram
models are progressively becoming more restrictive [16].

Regarding the contextual HMM-Filler approach using 1-
and 2-grams (employed as reference in Table IV), all ex-
perimentation was carried out according to [5]. As shown
in [4], since both approaches share identical text-line image
processing and character HMMs, performance results should
be identical for both approaches, according to Eq. (8). How-
ever, since CL-based KWS (necessarily) relies on incomplete
(pruned) CLs, some (negligible [4]) degradation is expected.

In Table IV we observe a very large gain in efficiency
for the CL-based KWS method with respect to the contextual
HMM-Filler approach. In this case, we report computing times

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0 1 2 3 4 5 6
6

8

10

12

14

16

18

20

22

A
P

P
P
L

N -gram Order

AP
PPL

Fig. 2. Average precision (AP) and language model perplexity (PPL) both in
function of the order of the N -gram used to generate the corresponding CLs.

only for the 1- and 2-gram, where no re-scoring (CLs were
obtained directly from Viterbi decoding) or beam-search has
been used to generate the CLs. The average query response
time is reduced by a factor of 76 and 78 for 1- and 2-gram
respectively. The corresponding overall time needed for fully
indexing all the selected keywords is affordable using the
proposed CL-based KWS method, while it becomes clearly
prohibitive for the contextual HMM-Filler approach.

TABLE IV. EFFECTIVENESS (AP) AND EFFICIENCY IN TERMS OF
PREPROCESSING AND AVERAGE QUERY TIMES AND TOTAL INDEXING

TIMES, FOR CLASSICAL HMM-FILLER (REF) AND CL-BASED KWS (CL).
CORRESPONDING FIGURES FROM PREVIOUS WORK [4] ARE INCLUDED.

Work [4] 1-gram 2-gram
CL REF CL REF CL

Preproc. Time (min) 219.5 65.6 227.5 66.4 245.7
Av. Query Time (min) 0.9 68.3 0.9 71.0 0.9
Total Ind. Time (days) 2.3 162.3 2.3 168.7 2.3
Average Precision 0.36 0.37 0.41

This table also contains the relevant computing times, split
into preprocessing and search (query) times, the latter given in
average minutes required for each single keyword search. The
table also shows total time (in days) needed to fully index the
corpus with the corresponding selected keywords (3 421 for
IAMDB – c.f. Sec. III-C).

IV. REMARKS AND CONCLUSIONS

In this paper we have presented new spotting results on
the IAMDB dataset using an extension of the CL-based KWS
method presented in [4]. This extension consists in introducing
context information on the character lattices employed for
performing the query search, which are produced by a standard
HMM-based handwritten character recognizer. The context in-
formation is provided by employing character N -gram models
with the mentioned recognizer. Actually, for 1- and 2-grams,
this method obtains practically the same spotting results as
the original contextual HMM-Filler approach in [5], but with
a drastic reduction of computational cost. Moreover, the pro-
posed approach avoids the increasing difficulty of building the
word-specific models when for increasing order of the filler N -
gram models. Thanks to the simplicity and great computational
efficiency of the CL-Filler approach, we have been able to
report, for the first time, handwritten text recognition KWS
Filler-HMM results with filler models beyond 2-grams.

It should be emphasized, that the IAMDB test set is
extremely small, as compared with the size of the (histori-
cal) text image collections for which keyword indexing and

search solutions are needed. For instance, medium sized book
or bundle collection such as Bentham or (the full) George
Washington are at least 1000 times larger than IAMDB. Since
the computing times of Table IV scale linearly with the size of
the text image collection considered, for collections of such
a moderate size, a traditional bi-gram HMM-Filler system
would require about 50 days to honor a single keyword
query!. In contrast, the proposed CL-Filler approach would
need only about half a day. Clearly, by resorting to (simple)
parallelization and other acceleration techniques, the latter can
become useful in practice, but the former can not.

REFERENCES

[1] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free hand-
written word spotting using character HMMs,” Pattern Recognition
Letters, vol. 33, no. 7, pp. 934 – 942, 2012.

[2] S. Wshah, G. Kumar, and V. Govindaraju, “Script independent word
spotting in offline handwritten documents based on hidden markov
models,” in Frontiers in Handwriting Recognition (ICFHR), 2012
International Conference on, 2012, pp. 14–19.

[3] A. H. Toselli, E. Vidal, V. Romero, and V. Frinken, “Word-graph
based keyword spotting and indexing of handwritten document images,”
Universidad Politcnica de Valencia, Tech. Rep., 2013.

[4] A. Toselli and E. Vidal, “Fast hmm-filler approach for key word spotting
in handwritten documents,” in 12th Int. Conf. on Document Analysis and
Recognition (ICDAR), 2013, Aug 2013, pp. 501–505.

[5] A. Fischer, V. Frinken, H. Bunke, and C. Suen, “Improving HMM-
Based Keyword Spotting with Character Language Models,” in Doc-
ument Analysis and Recognition (ICDAR), 2013 12th International
Conference on, Aug 2013, pp. 506–510.

[6] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press,
1998.

[7] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Confidence measures
for large vocabulary continuous speech recognition,” IEEE Transactions
on Speech and Audio Processing, vol. 9, no. 3, pp. 288–298, mar 2001.

[8] S. Ortmanns, H. Ney, and X. Aubert, “A word graph algorithm for
large vocabulary continuous speech recognition,” Computer Speech and
Language, vol. 11, no. 1, pp. 43–72, 1997.

[9] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, The
HTK Book: Hidden Markov Models Toolkit V2.1, Cambridge Research
Laboratory Ltd, Mar. 1997.

[10] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[11] S. Robertson, “A new interpretation of average precision,” in Pro-
ceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval, ser. SIGIR. New
York, NY, USA: ACM, 2008, pp. 689–690.

[12] U.-V. Marti and H. Bunke, “The iam-database: an english sentence
database for offline handwriting recognition,” Intern. Journal on Doc.
Analysis and Recog., vol. 5, pp. 39–46, 2002.

[13] R. Kneser and H. Ney, “Improved backing-off for N-gram language
modeling,” in Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), vol. 1. IEEE Computer Society, 1995, pp. 181–184.

[14] S. Johansson, G. N. Leech, and H. Goodluck, Manual of Information
to Accompany the Lancaster-Oslo/Bergen Corpus of British English,
for Use with Digital Computers, Department of English, University of
Oslo, 1978.

[15] D. Martn-Albo, V. Romero, and E. Vidal, “An experimental study
of pruning techniques in handwritten text recognition systems,” in
IbPRIA 2013: 6th Iberian Conference on Pattern Recognition and Image
Analysis. Springer Berlin Heidelberg, 2013, pp. 559–566, c.

[16] U.-V. Marti and H. Bunke, “Using a statistical language model to
improve the performance of an hmm-based cursive handwriting recogni-
tion system,” International Journal of Pattern Recognition and Artificial
Intelligence, vol. 15, no. 01, pp. 65–90, 2001.

