
Two Methods to Improve Confidence Scores for
Lexicon-free Word Spotting in Handwritten Text

Alejandro Héctor Toselli
PRHLT Research Center

Universitat Politècnica de València
Valencia, Spain

Email: ahector@prhlt.upv.es

Joan Puigcerver
PRHLT Research Center

Universitat Politècnica de València
Valencia, Spain

Email: joapuipe@prhlt.upv.es

Enrique Vidal
PRHLT Research Center

Universitat Politècnica de València
Valencia, Spain

Email: evidal@prhlt.upv.es

Abstract—Two methods are presented to improve word confi-
dence scores for Line-Level Query-by-String Lexicon-Free Key-
word Spotting (KWS) in handwritten text images. The first
one approaches true relevance probabilities by means of com-
putations directly carried out on character lattices obtained
from the lines images considered. The second method uses the
same character lattices, but it obtains relevance scores by first
computing frame-level character sequence scores which resemble
the word posteriorgrams used in previous approaches for lexicon-
based KWS. The first method results from a formal probabilistic
derivation, which allow us to better understand and further
develop the underlying ideas. The second one is less formal but,
according with experiments presented in the paper, it obtains
almost identical results with much lower computational cost.
Moreover, in contrast with the first method, the second one allows
to directly obtain accurate bounding boxes for the spotted words.

I. INTRODUCTION

There are large quantities of digitized historical handwritten
documents owned by libraries and archives. As most of such
documents lack transcripts, the information conveyed by the
text contained in them remain practically inaccessible. Thus,
to exploit and make profit of such a mass-digitization efforts,
fast information retrieval approaches are required to allow the
users to search accurately and efficiently for textual contents
in such material.

Aiming at this goal, Keyword spotting (KWS) on hand-
written documents arises as a good alternative for making
the information available to the users. Word spotting can be
considered as a special case of image retrieval, whose goal is to
find all instances of a given query word in the document collec-
tion. Among the noteworthy KWS paradigms aiming to fulfill
the above mentioned goal, here we adopt the segmentation-
free, query-by-string, training-based framework. Within this
paradigm, there are the so-called lexicon-free methods, which
as their name indicate, don’t relay on a predefined vocabulary
and therefore allow users to search for any wanted query.
As examples of lexicon-free KWS approaches for handwritten
documents, we can mention the popular ones based on Hidden
Markov Model filler (HMM-Filler) [1], [2], [3] or those based
on recurrent neural networks (RNNs) [4], [5].

In [6], a probabilistic framework for lexicon-free KWS was
proposed, of which the traditional HMM-Filler emerges as a
particular case. Furthermore in that work a efficient method is

presented to compute the confidence scores required by HMM-
Filler using character lattices. These lattices are obtained as
a byproduct of the decoding process of text images by a
recognition system using the HMM character filler model. The
distribution of the log-likelihoods of paths in these character
lattices is generally very sharp-peaked. This is because the
decoding parameters are generally optimized to achieve the
least error rate for the first-best hypotheses of the recognizer.
As a result, most of the probability mass is concentrated
practically on the first-best path, therefore making negligible
the contribution of the remaining paths. It is generally ac-
knowledged (see e.g., [7]) that, by changing adequately the
logarithm base of the log-likelihood scores of word-graph
arcs, a wider-spread distribution of path log-likelihoods can
be obtained – thereby improving the effectiveness of resulting
word confidence scores and the KWS accuracy.

In this work we explore this idea to see whether resulting
confidence scores computed according to the method proposed
in [6] (from now on named forward method) can also im-
prove KWS accuracy. In addition, we present an alternative
method for computing confidence scores, which resembles
the posteriorgram-based methodology for KWS at word level
proposed in [7]. Actually this new method, hereafter called
posteriorgram-like, uses a generalization of the algorithm al-
ready proposed in [8]. We show empirically that, as compared
with the forward method [6], the posteriorgram-like method
has two main advantages: first it produces practically identical
confidence scores, leading to the same KWS accuracy, but
requiring much less computing time; and second, in contrast
with the forward method it provides accurate image locations
of spotted words.

The rest of the paper is organized as follows. The next
section overviews the statistical framework for KWS. Sec. III
provides some background of HMM-based recognition and
essential details of character lattices. Sec. IV explains how
confidence scores of words represented by character sequences
can be directly computed using CLs. Sec. V describes the
more efficient alternative to compute word confidence scores
based on posteriorgram-like functions. Evaluation measures,
corpora, experimental set-up and results are presented/reported
in section VI. Finally, section VII summarizes the work
presented and draws conclusions.

II. PROBABILISTIC FRAMEWORK FOR KWS

As in [6], we define a binary random variable R to denote
whether an image region (e.g., a line) x is relevant for the
query keyword v formed by the concatenation of L characters
c1, c2 . . . , cL

def
= cv. An image is considered to be “relevant” if

cv is actually written in it. Let us also consider the probability
distribution P (R | V,X), where V and X are random
variables over all possible query keywords and all possible
image regions respectively. Note that, the probability we seek
to compute is P (R = 1 | V = cv,X = x). From now on,
for sake of clarity, we will omit the random variable names,
except for R = 1, which we will write simply as R.

The probability P (R | cv,x) is somewhat related to the
distribution of the possible transcripts of the image, P (c | x).
If we marginalize the distribution P (R | cv,x) over all
possible transcripts which include the keyword cv, we obtain:

P (R | cv,x) =
∑

c′∈Σ∗

P (R, c′ | cv,x) =
∑

c∈Σ∗ cv Σ∗

P (c | cv,x)

For all addends in the last sum, c contains cv and P (c | cv,x)
is therefore independent of cv, resulting in:

P (R | cv,x) =
∑

c∈Σ∗ cv Σ∗

P (c | x) =
∑

c∈Σ∗ cv Σ∗

p(c,x)

p(x)
(1)

This equation provides an expression of the probability that
an image x is relevant for a keyword cv, as the sum of the
likelihoods of all transcripts c of line image x containing the
keyword cv, divided by the total likelihood of the line image.

III. HMM-BASED RECOGNITION AND CHARACTER
LATTICES

To better understand the processes involved in the com-
putation of confidence scores using character lattices, the
next sections review some basic concepts of HMM-based
recognition and the associated character lattices.

A. HMM-based Handwriting Recognition

Segmentation-free character-level HMM recognition is con-
sidered here. Recognizers of this kind accept a given hand-
written text line image, represented as a sequence of D-
dimensional feature vectors x = ~x1, ~x2, . . . , ~xM , ~xi ∈ <D, as
input and find a most likely character sequence, ĉ∈Σ∗, where
Σ is the character alphabet. Moreover, rather than obtaining
just a single-best, most likely character sequence, a set of k
best character sequences can be obtained as:{

ĉ1, ĉ2, . . . , ĉk
}

= k-best
c1,...,ck

P (c | x) = k-best
c1,...,ck

p(c,x)

= k-best
c1,...,ck

p(x | c) · P (c) (2)

The conditional density p(x | c) is approximated by previously
trained optical character HMMs, while the prior distribution,
P (c), is given by a character-level N -gram model. Eq. (2) is
commonly solved by means of Viterbi decoding [9].

For very large values of k, the set of the most likely
character sequences can be approximately represented in a
compact way in the form of a character-lattice (CL). This
kind of lattices are better known in the literature as “word
graphs” [10].

B. Character-Lattices

A CL of a line image represented by its feature vector
sequence x is a weighted directed acyclic graph (DAG) with
finite sets of nodes Q and edges E. Q includes an initial node
qI ∈ Q and a set of final nodes F ⊆ (Q − qI). Each node q
is associated with a horizontal position (“frame”) of x, given
by t(q) ∈ [0,M], where M is the length of x. For an edge
(q′, q) ∈ E (q′ 6= q, q′ 6∈ F, q 6= qI), c = ω(q′, q) ∈ Σ is its
associated character and r(q′, q) is its score, corresponding
to the HMM likelihood that the character ω(q′, q) appears
between frames t(q′)+1 and t(q), computed during the Viterbi
decoding of x. This score is typically weighted by the so-
called log-base factor parameter, b, as follows:

s(q′, q) = r(q′, q)1/b

In what follows we assume the weight of each CL edge (q′, q)
to be given by s(q′, q). The parameter b affects the impact of
the different CL path scores in the computation of S(x) (see
below). However, these changes do not affect the best (or the
k-best order of) character sequence(s) in the CL. Actually the
goal of the parameter b is to obtain a wider-spread distribution
of the CL path likelihoods as was commented in Sec. I. In
practice, by tuning b adequately, significant KWS performance
improvements can be achieved. Fig. 1 shows an illustrative
example for a CL resulting from decoding an image containing
the handwritten text “to be for”.

A sub-path of a CL is an ordered sequence of edges
e ≡ (q′1, q1), (q′2, q2), . . . , (q′L, qL) such that qi = q′i+1, 1 ≤
i <L,L ≤ M . A complete path of a CL is a sub-path such
that q′1 =qI , qM ∈F and L = M . Complete paths correspond
to whole line decoding hypotheses. The score of a complete
path, e, is the product of the scores of all the edges of e:

S(e,x) =

M∏
i=1

s(q′i, qi)

Let Ω : E∗ → Σ∗ be an extension of ω(·), which denotes
the character sequence associated with a given sub-path e. The
likelihood score of a character sequence c ∈ Σ? is the sum of
S(e,x) for all complete paths e such that Ω(e) = c. That is;

S(c,x) =
∑

e:Ω(e)=c

S(e,x) (3)

And the total likelihood score of x, S(x), is the sum of the
scores of all complete CL paths. If a CL is large enough,
the scores S(c,x) and S(x) are good approximations to the
probabilities p(c,x) and p(x) which appear in Eq. (1) and (2).

As discussed in [7], S(x) can be very efficiently computed
by means of forward (α) or backward (β) accumulated path

scores, recursively computed by Dynamic Programming [10]:

S(x) =
∑
e

S(e,x) = β(qI) =
∑
q∈F

α(q) (4)

where:

α(q) =
∑

i:(qi,q)∈E

α(qi) s(qi, q) if q 6=qI (5)

β(q) =
∑

j:(q,qj)∈E

s(q, qj)β(qj) if q 6∈F (6)

with α(qI) = 1, and β(q) = 1 ∀q ∈ F .
The overall forward-backward computing time is negligible

with respect to that of CL generation, O(Γ · n), where Γ is a
(generally large) constant which depends on the CL size [7].

IV. COMPUTING CONFIDENCE SCORES DIRECTLY FROM
CHARACTER-LATTICE

Eq. 1 can be directly rewritten in terms of CL approxima-
tions (see Sec. III-B) as:

P (R | cv,x) ≈ 1

S(x)

∑
c∈Σ∗ cv Σ∗

S(c,x) (7)

Finally we can apply the same heuristics used in the
computation of HMM-Filler scores [1], [6], in order to mitigate
the problem of the exponential decay of the likelihood p(c,x)
with the length of x and c; that is:

P (R | cv,x) ≈

(
1

S(x)

∑
c∈Σ∗ cv Σ∗

S(c,x)

)1/Lσ

(8)

where L is the number of characters of cv and σ is weighting
parameter to be tuned empirically.

The sum in Eq. (8) can be obtained by means of the forward
computation (Eq. (5)) applied to a special DAG obtained from
the original CL and the keyword cv. To do that, an algorithm
based on the well-known Knuth–Morris–Pratt algorithm [11]
for string matching, is used to build a Deterministic Finite
Automaton (DFA) that accepts all the sequence of characters
in Σ∗ that contain the keyword cv, that is the regular language
Σ∗ cv Σ∗. Fig. 2 shows this automaton for the exemplar
keyword “soup”. Then, the previous DFA is simply intersected
with the CL, obtaining a new weighted DAG which encodes all
the possible paths from the original CL containing the keyword
cv. The forward likelihood in the final node of the intersection
graph is equal to the sum in Eq. 8.

Moreover, both the step of intersecting and the forward
computation can be directly tackled using an embedded
dynamic-programming algorithm, which avoids creating the
keyword DFA and intersecting the graphs explicitly. This way
has the same asymptotic running time, O((|Q| + |E|) · L),
where Q and E are the set of nodes and edges of the resulting
graph, respectively.

q0 q1 q2 q3 q4
s o u p

Σ− {s}

Σ− {s, o}

Σ− {s, u}

Σ− {s, p}

s

s

s
Σ

Fig. 2. Complete DFA accepting all strings containing the sequence of
characters: s o u p .

V. POSTERIORGRAM-LIKE BASED COMPUTATION OF
CONFIDENCE SCORES

We introduce here an alternative approach for computing
the confidence scores, P (R | cv,x), which in comparison
with the previous one, has a much lower computational cost
and, according to the experiments to be presented below, dose
not affect the KWS accuracy achieved.

Let e′ be a sub-path. The score ϕ(e′), named henceforward
edge sequence normalized score, is the normalized sum over
all complete paths e which contain the sub-path e′ (denoted
e′ ⊆ e, for simplicity). This sum can be efficiently computed
by means of the backward and forward accumulated scores of
Eq. (5–6):

ϕ(e′)
def
=

∑
e:e′⊆e

S(e,x)

S(x)
=

α(q′1)

L∏
i=1

s(q′i, qi)β(qL)

β(qI)
(9)

This score can be seen as a multi-edge extension of what is
often called “edge posterior” (see [7], e.g.).

Now, for a given character sequence cv to be spotted, we
define a frame-level character sequence score for each hori-
zontal position or frame, i, of the given image x. It considers
the contribution of the edge sequence normalized scores of
all the CL sub-paths labeled with cv, which correspond to
segmentation hypotheses that include the frame i; that is:

S(cv,x, i)
def
=

∑
cv=Ω(e),

e=(q′1,q1),...,(q′L,qL),

t(q′1)<i≤t(qL)

ϕ(e) (10)

Alg. 1 shows how to compute this sum efficiently.
S(cv,x, i) resembles what is often referred to as posterior-

gram [12], [7]. Fig. 1 shows an example of posteriorgram-like
function computed for the query “to” from the CL produced
during the decoding of the line image “to be for”.

As discussed in [7], the word confidence score P (R | cv,x)
is simply computed as the maximum over i of S(cv,x, i). In
addition, we also apply here the same heuristic used in Sec. IV
to mitigate the exponential decay of scores with the length of
x and c. This results in:

P (R | cv,x) ≈ max
i
S(cv,x, i)

1
Lσ (11)

b

t

f

a

o @ b

k

e

e

e

@ f

f

t

a
o

o

r

r

@

a
o

t @

f

t

e

S(cv,x, i)

y

q1
q2 q3

q4

q5

q6
q7 q8

β(q8)α(q6)

α(q5)

β(q3)

α(q4)

α(q1)

t(q4) t(q1) t(q2) t(q3) t(q6) t(q5) t(q7) t(q8)

Fig. 1. Top: A small, partial example of CL for a handwritten text “to be for”. The edge sequence paths: {(q1, q2), (q2, q3)}, {(q4, q2), (q2, q3)},
{(q5, q7), (q7, q8)} and {(q6, q7), (q7, q8)} (in dashed red lines) correspond to the query character sequence: cv=“to”. The “@” symbol stands for the
white space character. Bottom: Corresponding posteriorgram-like frame-level function S(cv,x, i). Note that the score S(”to”,x, i) is not negligible in the
interval where the word “for” appears in the image. However is much lower than in the correct interval where “to” is actually written.

Algorithm 1 Comput. of the frame-level score: S(cv,x, i)

Input: query word: cv ≡ c1, c2, . . . , cL.
CL generated from decoding an input image of length n.
α(qj), β(qj) : j = 1, 2, . . . , | Q | computed for all CL
nodes.

Output: S ≡ S1, . . . , Sn, frame-level score vector

Let P: stack of tuples (ϕ∈<, k∈ [0, n], q∈Q, p∈ [1, L])
P.clear(); S′ ← ~0
for all (q′, q) : c1 = ω(q′, q) do

P.push(α(q′)·s(q′, q), t(q′), q, 2)
end for
while not P.empty() do

(ϕ, k, q, p)← P.top(); P.pop()
if p ≤ L then

for all q′ : cp = ω(q, q′) do
P.push(ϕ·s(q, q′), k, q′, p+1)

end for
else
ϕ← ϕ·β(q)

β(qI)
for i← k to t(q) do
Si ← Si+ϕ

end for
end if

end while
return S

where, as in Eq. (8), L and σ are the number of characters of
cv and a weighting parameter respectively.

As commented, this method also provides the spotted
word location associated to the maximum i used to compute
P (R | cv,x); for instance, in the example shown by the Fig. 1,
the best scores of S(cv,x, i) for the keyword “to” (whose
maximum is P (R | cv,x)) span positions t(q1) through t(q3).

The overall cost of computing the final confidence score
given by Eq. (11), excluding CL generation and forward-
backward computation, is determined by the costs of com-

puting the frame-level character sequence score S for all i
and the final maximization of Eq. (11). According to Alg. 1,
the worst-case cost of computing S(cv,x, i), 1 ≤ i ≤ n is
O(n+ l ·BL), where l is the average length (in frames) of the
sub-paths corresponding to cv, and B = |E|/(|Q| · |Σ|) is the
CL average branching factor per character.

Real computing times of this KWS approach, compared
with the one presented in Sec. IV, will be reported in Tab. II.

VI. EXPERIMENTS

To compare the effectiveness and efficiency of both
computing confidence score methods: the forward and the
posteriorgram-like, several experiments were carried out. The
evaluation measures, corpus, experimental setup and the re-
sults are presented next.

A. Evaluation Measures

The standard recall and interpolated precision mea-
sures [13] are used here. Interpolated precision is widely used
to avoid cases in which plain precision can be ill-defined.
Results are reported in terms of average precision (AP) [14],
which is computed as the area under the Recall-Precision curve
and is a popular scalar assessment measure for KWS.

On the other hand for efficiency assessment, real computing
times are reported in terms of total elapsed times measured
on a dedicated single-core of an Intel R© XeonTM running at
2.5GHz.

B. Corpora Description

Experiments were carried out with the IAMDB dataset. It is
a publicly available, well known modern English handwritten
text corpus, compiled by the FKI-IAM Research Group on
the base of the Lancaster-Oslo/Bergen Corpus (LOB). The
last released version (3.0) is composed of 1 539 scanned text
pages, handwritten by 657 different writers and partitioned
into writer-independent training, validation and test sets. The
line segmentation provided with the corpus [15] is used here.
Basic statistics appear in Table I.

TABLE I
BASIC STATISTICS OF THE IAMDB DATABASE AND ITS PARTITION.

Training Validation Test Total

Running chars 269 270 39 318 39 130 347 718
Running words 47 615 7 291 7 197 62 103
Lines 6 161 920 929 8 010

Char set size 72 69 65 81
Lexicon size 7 778 2 442 2 488 9 809

C. Query Set

In this work the same set of query words defined and
used in [1] and [8] is adopted. It consists of all the words
which appear in the IAMDB training partition, except very low
frequency and stop words. The resulting query set contains
3 421 keywords, including numeric expressions and a few
symbols.

D. Experimental Setup

The experimental setup is practically the same as in [6],
[8]. Character HMMs were trained from the IAMDB training
partition. A left-to-right HMM was trained for each of the
elements appearing in the training text images, such as lower-
case and uppercase letters, symbols, blank spaces, etc. Specific
setup details of image preprocessing, feature extraction and
HMM training usually adopted for IAMDB are described
in [1]. Meta-parameters related to the character HMMs, such
as number of states and Gaussian densities per state, were
optimized on the validation data.

The N -gram models required for generating the CLs, were
trained using text from the Lancaster-Oslo/Bergen corpus
(LOB) [16] and smoothed using the Kneser-Ney back-off
technique [17]. The text used contains a variety of printed
British English texts which, in total, encompasses more than
one million words. Since some of these texts were used
to create the IAMDB itself, they were removed from the
validation and test sets.

Once all the N -gram models had been trained, the CLs of
the validation and test lines were obtained using the HTK
Toolkit [18] for each N -gram model with 1 ≤ N ≤ 4,
and also for the 0-gram model (traditional character “filler”
model without prior probabilities). Since HTK can only decode
directly using up to 2-gram models, we have resorted to re-
scoring [8] to obtain CLs for 3− and 4-grams. That is, a
3-gram CL is obtained by re-scoring the previous 2-gram CL
with the 3-gram model and, in turn, a 4-gram CL by re-scoring
the previous 3-gram CL with the 4-gram model. To obtain
results for 5- and 6-grams we used CLs produced by another
recognizer, iATROS [19]1, capable of dealing with N -grams
of order greater than 4.

In addition, the two language model parameters grammar
scale factor and character insertion penalty were also tuned
empirically on the validation set for an optimum character
error rate. After optimizing these two parameters, the CLs

1iATROS is less efficient than the HTK decoder and, moreover, for N<5
iATROS CLs tend to produce slightly worse results than those obtained with
HTK. Therefore HTK+re-scoring was preferred for N < 5.

of the 929 test-set lines were generated. The sizes of the
CLs were limited by setting the maximum input degree to 30
and applying beam-search pruning. Statistics and other details
about the resulting CLs can be consulted in [8].

Once all CLs have been generated, the forward-backward
scores were computed according to Eq. (5-6).

The parameters b and σ appearing in Eqs. (8), (9) and (11),
were tuned empirically on the validation set to optimized the
KWS accuracy.

Finally, the two methods of computing confidence scores
were applied for each keyword, cv, and test line image, x
according according to what was described in Secs. IV and V.

E. Results

Experiments were carried out to compare both the effective-
ness and the efficiency of the two proposed methods for KWS
confidence score computation explained in previous sections.

Average Precision figures obtained using the forward and
the posteriorgram-like methods are reported in Tab. II for CLs
produced using N -gram models with N ∈ [0, 6]. As expected,
for all the methods, the AP increases with the N -gram order.
This confirms previous results [8], [6] and clearly shows the
great importance of taking advantage of linguistic context for
KWS. We can also see that the AP values obtained by both
methods proposed in this work are identical.

For comparison purposes and to establish a baseline, the row
labeled with “Filler” in Tab. II provides the AP figures obtained
with the N -gram-based HMM-Filler model studied in [8].
These figures are somewhat better than those reported in [8]
(and [6]) because, in order to allow fair comparison, here we
have more carefully optimized all the empirical settings (cf.
Sec. VI), exactly in the same way as for the here proposed
approaches. The results clearly assess the superiority of the
here proposed methods.

On the other hand, to assess the efficiency, real computing
times (in milliseconds) are also reported in Tab. II for the
two new confidence score computing methods. These results,
clearly show that the posteriorgram-like method is very much
faster than the forward one.

This can be understood if we take into account, for instance,
that the average CL for N = 4 has about 125 K nodes and
557 K edges [8] and therefore the average branching factor is
B ≈ 557/125) ≈ 4.5. For a typical line image of about 2 000

TABLE II
AVERAGE PRECISION (AP %) AND AVERAGE QUERY TIMES

(MILLISECONDS) PER LINE AND KEYWORD IN IAMDB, USING CLS
PRODUCED WITH N -GRAMS FOR INCREASING N AND DIFFERENT

METHODS TO COMPUTE THE KWS SCORES.

Approach N -gram
0 1 2 3 4 5 6

AP
Forward 41.8 47.6 50.3 53.1 56.9 58.9 61.3
Pstgram-like 41.8 47.6 50.3 53.1 56.9 58.9 61.3

Filler 40.2 42.9 45.3 48.3 50.0 50.5 50.8

Time Forward 533.8 522.2 560.0 355.1 383.7 441.5 191.9
Pstgram-like 61.0 147.6 225.6 57.7 35.2 81.9 26.3

frames and an average keyword length of 5 characters and 50
frames, the approximate overall cost of the posteriorgram-like
method would be roughly proportional to 2000 + 50 · 4.55 ≈
9.5 · 104. In contrast, the cost of the forward method would
be roughly proportional to (125 000 + 557 000) ·4 ≈ 2.7 ·106.

VII. REMARKS AND CONCLUSIONS

Two methods have been have been proposed to im-
prove word confidence scores for segmentation-free, line-level,
query-by-string, lexicon-free keyword spotting in handwritten
text images. The first method, which results from a formal
probabilistic derivation, computes required confidence scores
directly from character lattices obtained during HTR decoding
of the line images considered. The less formal second method
uses the same character lattices to compute frame-level charac-
ter sequence scores (a posteriorgram-like function) from which
the line-region confidence scores are determined by simple
maximization.

According to the experimental results, both methods pro-
duce identical KWS results, but the computational cost of the
second is very much lower. In addition, the second method
provides accurate locations of spotted words in the image.

The KWS results of both proposed methods are very much
better than those of the classical HMM-Filler approach [20],
[1], [21] and significantly better than those of previous meth-
ods [22], [8], [6], more or less explicitly derived from the
HMM-Filler idea, but using linguistic context in the form of
character N -grams.

In addition, our second, posteriorgram-like approach, is
orders of magnitude faster than the traditional implementations
of HMM-Filler [1], [21], based on direct Viterbi decoding. It
is also significantly faster than previous CL based implemen-
tations of HMM-Filler and contextual HMM-Filler [8], [6].

VIII. ACKNOWLEDGMENTS

This work was partially supported by the Spanish MEC
under FPU grant FPU13/06281, by the Generalitat Valenciana
under the Prometeo/2009/014 project grant ALMAMATER,
and through the EU projects: HIMANIS (JPICH programme,
Spanish grant Ref. PCIN-2015-068) and READ (Horizon-2020
programme, grant Ref. 674943).

REFERENCES

[1] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free handwrit-
ten word spotting using character HMMs,” Pattern Recognition Letters,
vol. 33, no. 7, pp. 934 – 942, 2012, special Issue on Awards from ICPR
2010.

[2] S. Wshah, G. Kumar, and V. Govindaraju, “Script independent word
spotting in offline handwritten documents based on hidden markov
models,” in Frontiers in Handwriting Recognition (ICFHR), 2012 In-
ternational Conference on, 2012, pp. 14–19.

[3] J. A. Rodrı́guez-Serrano and F. Perronnin, “Handwritten word-spotting
using hidden Markov models and universal vocabularies,” Pattern
Recognition, vol. 42, pp. 2106–2116, September 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1542560.1542881

[4] V. Frinken, A. Fischer, R. Manmatha, and H. Bunke, “A Novel Word
Spotting Method Based on Recurrent Neural Networks,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp.
211 –224, Feb. 2012.

[5] S. Thomas, C. Chatelain, L. Heutte, T. Paquet, and Y. Kessentini,
“A deep hmm model for multiple keywords spotting in handwritten
documents,” Pattern Analysis and Applications, vol. 18, no. 4, pp. 1003–
1015, 2015.

[6] J. Puigcerver, A. H. Toselli, and E. Vidal, “Probabilistic interpretation
and improvements to the hmm-filler for handwritten keyword spotting,”
in Document Analysis and Recognition (ICDAR), 2015 13th Interna-
tional Conference on, Aug 2015, pp. 731–735.

[7] A. H. Toselli, E. Vidal, V. Romero, and V. Frinken, “Word-graph
based keyword spotting and indexing of handwritten document images,”
Universidad Politcnica de Valencia, Tech. Rep., 2013.

[8] A. H. Toselli, J. Puigcerver, and E. Vidal, “Context-aware lattice based
filler approach for key word spotting in handwritten documents,” in
Document Analysis and Recognition (ICDAR), 2015 13th International
Conference on, Aug 2015, pp. 736–740.

[9] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press,
1998.

[10] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Confidence measures
for large vocabulary continuous speech recognition,” IEEE Transactions
on Speech and Audio Processing, vol. 9, no. 3, pp. 288–298, mar 2001.

[11] D. Knuth, J. Morris, Jr., and V. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350,
1977. [Online]. Available: http://dx.doi.org/10.1137/0206024

[12] T. J. Hazen, W. Shen, and C. White, “Query-by-example spoken term
detection using phonetic posteriorgram templates,” in Automatic Speech
Recognition Understanding, 2009. ASRU 2009. IEEE Workshop on, Nov
2009, pp. 421–426.

[13] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[14] S. Robertson, “A new interpretation of average precision,” in
Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, ser. SIGIR.
New York, NY, USA: ACM, 2008, pp. 689–690. [Online]. Available:
http://doi.acm.org/10.1145/1390334.1390453

[15] U.-V. Marti and H. Bunke, “The iam-database: an english sentence
database for offline handwriting recognition,” International Journal on
Document Analysis and Recognition, vol. 5, pp. 39–46, 2002.

[16] S. Johansson, G. N. Leech, and H. Goodluck, Manual of Information
to Accompany the Lancaster-Oslo/Bergen Corpus of British English, for
Use with Digital Computers, Department of English, University of Oslo,
1978.

[17] R. Kneser and H. Ney, “Improved backing-off for N-gram language
modeling,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 1. Los Alamitos, CA, USA: IEEE Computer
Society, 1995, pp. 181–184.

[18] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, The
HTK Book: Hidden Markov Models Toolkit V2.1, Cambridge Research
Laboratory Ltd, Mar. 1997.

[19] D. Martn-Albo, V. Romero, and E. Vidal, “An experimental study
of pruning techniques in handwritten text recognition systems,” in
IbPRIA 2013: 6th Iberian Conference on Pattern Recognition and Image
Analysis. Springer Berlin Heidelberg, 2013, pp. 559–566, c.

[20] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “HMM-based Word
Spotting in Handwritten Documents Using Subword Models,” in 20th
International Conference on Pattern Recognition (ICPR), Aug. 2010,
pp. 3416 –3419.

[21] A. H. Toselli and E. Vidal, “Fast HMM-Filler approach for Key Word
Spotting in Handwritten Documents,” in Proc. of the Intl. Conf. on
Document Analysis and Recognition (ICDAR’13), Washington, DC,
USA, Aug. 2013.

[22] A. Fischer, V. Frinken, H. Bunke, and C. Suen, “Improving HMM-Based
Keyword Spotting with Character Language Models,” in Document
Analysis and Recognition (ICDAR), 2013 12th International Conference
on, Aug 2013, pp. 506–510.

