
Word-Graph-based Handwriting Keyword Spotting
of Out-of-Vocabulary Queries

Joan Puigcerver
PRHLT Research Center

Universitat Politècnica de València
Camí de Vera s/n

46022 - València - Spain
Email: jpuigcerver@dsic.upv.es

Alejandro Héctor Toselli
PRHLT Research Center

Universitat Politècnica de València
Camí de Vera s/n

46022 - València - Spain
Email: ahector@dsic.upv.es

Enrique Vidal
PRHLT Research Center

Universitat Politècnica de València
Camí de Vera s/n

46022 - València - Spain
Email: evidal@dsic.upv.es

Abstract—Thanks to the use of lexical and syntactic informa-
tion, Word Graphs (WG) have shown to provide a competitive
Precision-Recall performance, along with fast lookup times, in
comparison to other techniques used for Key-Word Spotting
(KWS) in handwritten text images. However, a problem of WG
approaches is that they assign a null score to any keyword
that was not part of the training data, i.e. Out-of-Vocabulary
(OOV) keywords, whereas other techniques are able to estimate
a reasonable score even for these kind of keywords. We present
a smoothing technique which estimates the score of an OOV
keyword based on the scores of similar keywords. This makes the
WG-based KWS as flexible as other techniques with the benefit
of having much faster lookup times.

I. INTRODUCTION

Handwritten Keyword Spotting (KWS) aims to determine,
with a pre-specified confidence level, whether a given keyword
is written in a document image or image region, or it is not.
Recently, Word-Graphs (WG) have been used for KWS in
handwritten text images [1], [2]. The WGs used in this ap-
proach are produced by Viterbi-decoding text line images using
morphological, lexical and language models previously trained
for the handwriting task in hand. WG-based KWS spotting
scores can be easily used to create an index which allows for
extremely fast, confidence-level controlled look-up for indexed
words. Moreover, the Precision-Recall performance of this
KWS model has been shown to be competitive in comparison
with other lexicon-agnostic methods, such as the HMM-filler
approach [3], [4], and comparable with that of BLSTM KWS,
which is perhaps the best handwritten KWS method currently,
if its very high training costs are not taken into account.

One disadvantage of WG-based KWS is that any keyword
that it is not included in a WG will be given a null score,
and thus, it becomes completely useless for out-of-vocabulary
(OOV) keywords (that is, words that were not included in the
trained models). On the other hand, the density or maximum
node input degree (NID, which specifies the amount of in-
formation retained at each node during the WG generation
process) also affects the performance of this method – even
though, as shown in [5], a reasonably good performance can
be achieved with relatively small WGs with a minor loss of
the useful retained information.

Lexicon-free approaches such as HMM-filler or BLSTM,
however, do not suffer from this problem. But, lacking a

lexicon, they do not lend themselves adequate for direct
word indexing. Therefore, the search time needed by these
approaches often becomes prohibitive for large collections of
handwritten images (for one million images, for instance, a
single keyword query could require days or weeks of intensive
computing).

According to this state of affairs, practical applications
involving large image collections call for using a hierarchy
of spotting methods. In the first level, a lexicon-based index
(obtained by means of WG KWS) provides fast and accurate
spotting results for usual queries. Then, for non-indexed key-
words, an affordable method is needed which provides at least
some reasonable spotting results, even at the cost of producing
many false alarms (i.e., ensure a high recall even though
the precision is low). Finally lexicon-free methods could be
used in exceptional cases, when the user is highly interested
in spotting a specific (non-indexed) keyword and can afford
waiting for days or weeks to obtain reasonably accurate KWS
results with not too many false alarms.

This paper explores smoothing techniques to deal with the
intermediate level discussed above. The smoothed score for
an OOV keyword is based on the word-posterior probabilities
of other words which are included in the WG, as well as on
the similarity between these keywords and the query word.
The similarity is modeled by means of a stochastic error-
correcting analysis, which provides a similarity probability of
an (unknown) word, given another (known) keyword.

The support of OOV keywords for a real KWS system
is fundamental, since it is very likely that, over time, a
considerable amount of queries will fall into this category.
Therefore, WG-based KWS approaches must provide some
solution for these keywords.

The paper is organized as follows: Sec. II introduces basic
concepts of HMM-based Handwriting Text Recognition (HTR)
and WGs, the basis framework used by the WG-based KWS
approach. Sec. III presents the WG-based KWS approach
used in this work. The proposed smoothing methods are
presented in Sec. IV. Performance assessment metrics, corpora,
experimental setup and results are reported in Sec. V. Finally,
Sec. VI summarizes this work and draws conclusions and
future lines of research.

II. HTR FRAMEWORK USING HMMS AND N -GRAMS

This work is framed in a line-level KWS scenario, and
thus, a line-level HTR framework is used as basis. Text line
images can be obtained from each document image using well-
known text line detection and segmentation algorithms [6]. A
sequence of feature vectors is obtained after applying different
normalization and feature extraction techniques. Fig. 1 shows
an overview of the HTR decoding process. More details about
the different modules can be found in [7].

HMMs and N -grams are widely used models in the HTR
field, which were originally introduced in [8] and devel-
oped with additional details in [9], [10], among other works.
They are used to estimate the most likely word sequence,
ŵ = ŵ1ŵ2 . . . ŵl, represented by a given text line image,
encoded as a sequence of d-dimensional feature vectors x =
~x1, ~x2, . . . , ~xn,~xi ∈ Rd, according to Eq. (1).

ŵ = arg max
w

P (w |x) = arg max
w

p(x |w) · P (w) (1)

The conditional distribution p(x |w) is modeled by the con-
catenation of several character HMMs [11], [12], and the prior
P (w) is modeled using a N -gram language model [11].

The Viterbi algorithm [11] can be used to solve Eq. (1). A
huge set of best hypotheses for ŵ, along with the correspond-
ing word segmentations and likelihoods, can be obtained as a
byproduct of the Viterbi decoding as well, in form of a WG.

A WG of a vector sequence x is a weighted directed acyclic
graph G(x) = (Q, q0, F, τ, ω, δ), with initial node q0 ∈ Q and
a set of final nodes F ⊆ (Q−{q0}). Each node q has associated
an integer given by τ(qi) ∈ [0, n] (where n is the length of the
sequence x). For every edge (q, q′) ∈ E (q 6= q′, q /∈ F, q′ 6=
q0), the application ω(q, q′) = v associates a word v to the
edge and δ(q, q′) is a score, corresponding to the likelihood
that the word ω(q, q′) is written in the image segment delimited
by frames xτ(q)+1, . . . , xτ(q′). These likelihoods are given by
the decoding process. Fig. 2 shows an illustrative example of
a normalized WG.

As mentioned above, WGs contain a huge set of possible
decoding hypotheses for x. Each of these hypotheses is en-
coded as a complete path in the WG, which is any sequence
of connected nodes starting with the initial node q0 and ending
with one of the final nodes qF ∈ F .

III. WG-BASED KWS FOR HANDWRITTEN TEXT LINES

This work uses the KWS approach for handwritten text
line images presented in [1]. For each keyword v and each text
line represented by x, a score S(v,x) is computed according
to Eq. (2), which measures the confidence of the system about
the statement “keyword v is in line x” (scores are given in
the range [0,1], with 1 being a high confidence and 0 a low
confidence).

S(v,x)
def
= max

1≤i≤n
P (v|x, i) (2)

In the previous equation, P (v|x, i) is referred as the frame-
level word posterior, which is the probability that the word v is
present in the line image at position i (the index of the feature
vector x). This probability can be directly approximated from

G(x), as shown in [1], [2], considering the contribution of all
the edges labeled with the keyword v, i.e. all the segmentation
hypotheses that include the frame i. Eq. (3) shows how to
compute this probability, where α(·) is the forward and β(·)
backward accumulated path scores which can be efficiently
computed on the WGs using dynamic programming [13], [1].

P (v | i,x) ≈
∑

(q,q′)∈E:
v=ω(q,q′),
τ(q)<i≤τ(q′)

α(q) · s(q, q′) · β(q′)

β(q0)
(3)

IV. WORD-GRAPH SMOOTHING FOR OOV KEYWORDS

A. Score Smoothing with Levenshtein Distance

First, we tried to give a score for an OOV keyword directly
from the scores of the other keywords which are included in
G(x), using the Levenshtein distance as a similarity metric
between the OOV keyword and the keywords included in the
WG (the set VG(x)). Thus, the score of an OOV keyword u
for a line image represented by x is computed as:

S(u,x)
def
= max
v∈VG(x)

S(v,x)1−αe−αd(u,v) (4)

In the previous equation, d(u, v) refers to the Levenshtein
distance between keywords u, v. The parameter α is used
to fine-tune the importance of the similarity measure, in the
same way that the grammar scale factor is used to tune
the importance of the LM in HTR and Automatic Speech
Recognition (ASR). We use this method as a baseline to
compare the proposed smoothing method, introduced below.

B. Frame-level Word Posterior Smoothing

Consider the frame-level word posterior probability
P (u|x, i) of a keyword u which is not present in any edge
of G(x), e.g. an OOV query. Then, P (u|x, i) = 0 for any
frame i, and thus S(u,x) = 0. However, we would like to give
some non-zero score to this keyword. The posterior probability
P (u|x, i) can be marginalized among all keywords in VG(x)

as Eq. (5) indicates.

P (u|x, i) =
∑

v∈VG(x)

P (u, v|x, i) =
∑

v∈VG(x)

P (v|x, i)P (u|v,x, i)

(5)
By assuming that u is conditionally independent of x and i,
given v, Eq. (5) can be approximated as:

P (u|x, i) ≈
∑

v∈VG(x)

P (v|x, i)P (u|v) (6)

Observe that P (u|x, i) and P (v|x, i) are actually different
distributions, since keyword u and v come from different
random variables: u ∈ Σ∗ and v ∈ VG(x), where Σ is the
set of symbols of the language and Σ∗ is the set of any
number of concatenations of symbols in Σ (i.e. any string
formed by symbols from Σ plus the empty string). Thus,
P (u|x, i) +

∑
v∈VG(x)

P (v|x, i) ≥ 1. Equality holds if and
only if P (u|x, i) = 0. However, we combine P (u|x, i) and
P (v|x, i) into a single distribution by adding the event u to
the set of possible outcomes from VG(x) and re-normalizing

PREPROCESSING AND

FEATURE EXTRACTION

HANDWRITTEN TEXT

DECODING

is / 0.10
of / 0.25

near / 0.09
of / 0.13

hame / 0.23

placed / 0.26

home / 0.15

home / 0.42 located / 0.47

of / 0.18

located / 0.15

near / 0.29
placed / 0.17

house / 0.35

is / 0.34

near / 0.62

Text Line Image
Sequence of Feature Vectors

Word Graph

Lenguage Model
N−GRAM Word

Models HMMs
Character

Fig. 1. Diagram of the HTR decoding process. The input image containing the text “home is located near” is processed and different features are obtained:
average grey-level and horizontal & vertical components of the grey-level gradient. The decoding step uses character HMMs, lexicon word models and N-gram
language models to build the corresponding WG.

Fig. 2. Illustrative, simplified example of a normalized WG that would be obtained from the decoding of a line image, x, of the Spanish handwritten text:
“antiguos ciudadanos, que en Castilla se llamaban”, represented by its sequence of feature vectors of length n = |x |. Each edge (q, q′) is labeled with the
corresponding word, ω(q, q′), and weighted with its “edge posterior”, δ(q, q′). Node positions, tq ≡ τ(q), corresponding to different word segmentations, are
also shown on the bottom and in the image itself.

the distribution so that
∑
v∈VG(x)∪{u} P̃ (v|x, i) = 1. In the

case of the smoothed word posterior for an OOV keyword u,
this results in Eq. (7).

P̃ (u|x, i) =

∑
v∈VG(x)

P (v|x, i)P (u|v)α

1 +
∑
v∈VG(x)

P (v|x, i)P (u|v)α
(7)

As before, α is used to fine-tune the importance of the
similarity measure.

Finally, the score for an OOV keyword u and the text line
image x is obtained using Eq. (7) in Eq. (2).

C. Similarity Probability

In order to compute the smoothed frame-level word poste-
rior P̃ (u|i,x) the conditional probability P (u|v) (referred to as
similarity probability), is needed. This conditional probability
is modeled using the traditional approach in stochastic error
correction, presented in [14]. This approach uses the classical
definition of insertion, deletion and substitution operations
between two string. For each string v = v1 · · · vm, a stochastic
finite-state machine (FSM) is built with states q0, q1, . . . , qm,
where q0 is the initial state and qm is the final state. There
are edges joining consecutive states, which represent the
operations of substitution and deletion of a symbol vi, and
loops for each state representing the insertion of new symbols.

Observe that this FSM can accept any string in Σ∗. Fig. 3
shows the FSM defined for the string aab.

q3q2q1q0

Σ− {b}

b

ε

ΣΣ
Σ− {a}

a

ε

ΣΣ
Σ− {a}

a

ε

Fig. 3. FSM used to compute P (u|“aab”), ∀u ∈ Σ∗. Erroneous edit
operations are represented by dashed lines.

Edges in the FSM have associated weights which allow
us to compute P (u|v) by means of a forward-like algorithm.
Instead of using the originally proposed Baum-Welch algo-
rithm to estimate the weights of the edges in the FSM, the
frequencies of the corresponding edit operations given by the
minimum Levenshtein distance alignment [15] of a training
set of pairs of strings are used (a confusion matrix is obtained
with counts of how many times symbol a was substituted by
b, including insertions and deletions).

D. Length-independent correction

A well known problem when modeling P (u|v) with a FSM
is that the greater the length of v, the lower maxu∈Σ∗ P (u|v).
This behavior is not desirable, since the score S(v,x) happens
to be highly dependent of the length of both u and v, no matter

which line is considered. We observed that long keywords
tended to have much lower scores systematically, and thus,
we decided to change the way of smoothing P̃ (u|x, i), so
that the length of the keyword does not affect that much. We
define a factor f(u, v) as follows and we substitute Eq. (7)
with Eq. (9).

f(u, v) =
P (u|v)

maxu′∈Σ∗ P (u′|v)
(8)

P̃ (u|x, i) =

∑
v∈VG(x)

P (v|x, i)f(u, v)α

1 +
∑
v∈VG(x)

P (v|x, i)f(u, v)α
(9)

V. EXPERIMENTS

Several experiments were conducted to assess the perfor-
mance of the proposed smoothing method when it is used to
search for OOV keywords, using different WG sizes. Perfor-
mance assessment, corpora, experimental setup and results are
presented below.

A. Performance assessment

We use the average precision (AP) [16] metric, based
on the standard recall and interpolated precision measures.
Interpolated precision is widely used to avoid cases where
plain precision can be ill-defined [17]. Precision and recall are
functions of a threshold used to determine whether the score
S(v,x) is high enough to assume that v is relevant in x (i.e. v
appears in x). This function is summarized into a single scalar
measure, the area under the recall-precision curve, which takes
into account all possible thresholds.

In addition, we use the mean average precision (MAP),
which is also very often adopted in the KWS literature. It is
computed by averaging the average precision of each keyword.
While it is often claimed to better reflect the real user search
experience, it has the problem that it is not well defined in the
case of non-relevant queries, thus the AP is here preferred, in
particular to fine-tune KWS hyper-parameters.

B. Corpora

The “Cristo-Salvador” (CS) corpus was used to carry
out the experiments. This is a XIX century Spanish
manuscript kindly provided by the Biblioteca Valenciana Digi-
tal1 (BiVaLDi). It is composed by 50 color images of 5.1×7.2
inches of relevant text pages, written by a single writer and
scanned at 300dpi. The CS corpus and directions for its
usage in HTR experiments is publicly available for research
purposes2.

The first 29 pages (675 lines) are used as a training set and
the test set contains the remaining 21 pages (497 lines), many
of which are formed by notes and short comments written in
a style rather different from that of the training pages. Tab. I
summarizes this information. Word statistics were computed
ignoring capitalization and punctuation marks.

1http://bv2.gva.es
2https://prhlt.iti.upv.es/page/data

TABLE I. BASIC STATISTICS OF THE CRISTO-SALVADOR DATASET

Training Test Total

Running Chars 35,863 26,353 62,216
Running Words 6,223 4,637 10,860
Running OOV(%) – 29.03 –
Lines 675 497 1,172
Pages 29 21 50
Char Lex. Size 78 78 78
Word Lex. Size 2,236 1,671 (1,051 OOV) 3,287
OOV Lex. Size – 1,051 –
Events (Lex. × # Lines) – 830,487 –
OOV Events (OOV × # Lines) – 522,347 –
Relevant Events – 4,346 –
Relevant OOV Events – 1,341 –

C. Experimental setup

The CS line images of the training partition were used to
train the character HMMs using the standard embedded Baum-
Welch training algorithm [11], [18]. A left-to-right HMM was
trained for each of the 78 elements appearing in the training
text images, such as lowercase and uppercase letters, symbols,
special abbreviations, possible spacing between words and
characters, crossed-out words, etc. On the other hand, a lexicon
and a bi-gram language model (LM) was trained from the
transcripts of the line images of this training partition.

Since CS does not have a standard validation set, a 10-
fold cross-validation of the training set was adopted to tune
all the system hyper-paramentes. The same scheme was used
to estimate the character ins-subs-del probabilities of the
proposed error model, P (u|v).

For each of the validation partitions, HMMs and LMs
where trained independently and tested in order to tune the
hyper-parameters of the HTR feature extraction module (e.g.
frame width and height) and the HMMs models parameters
(number of states for the HMMs, grammar scale factor, word-
insertion penalty, etc). Bi-gram LMs where trained converting
uppercase character to lowercase and eliminating punctuation
symbols and diacritics. Finally, the standard Kneser-Ney back-
off technique was used to smooth the probabilities of unseen
bi-grams of the LM [19].

The best HTR accuracy was observed when the original
line image was segmented into m = 16 rows and a number
of columns, n, chosen so that m

n was three times the original
line image aspect ratio. Thus, each line image was represented
as a sequence of n vectors (frames) of 48 dimensions, with
an average number of frames equal to n = 1659. The optimal
number of states per HMM was 14, with 16 Gaussian densities
per state.

For each validation set, the ins-del-sub probabilities were
estimated by means of a confusion matrix obtained by com-
puting the frequency of each character, a, being substituted
by character, b, including the case of a or b being the empty-
string symbol. These frequencies were determined from the
Levenshtein-distance alignment between the 1-best decoding
in each validation partition and the corresponding ground-truth
transcript, as explained in Sec. IV-C.

In order to perform KWS experiments, the vocabulary in
each of the validation partitions was used as the query set
during cross-validation to tune the KWS smoothing hyper-
parameters (α). Once these were tuned, the final performance

was measured using the test vocabulary as the query set for
KWS on the test lines. The proposed smoothing methods were
only used for OOV keywords, whereas in-vocabulary keywords
used the score given by the baseline approach.

During cross-validation, values of α in the range [0, 1]
with increments of 0.1 units were tried for different WG sizes
(NID values of 1, 3, 5, 10, 20, 40). The AP was computed and
averaged across the 10 validation partitions to obtain the best
α value for each smoothing method and each NID value.

In principle, a different α value could be used for each NID
value. However, since the confidence intervals were highly
overlapping for some values, the α which provided the highest
average improvement across all NID values was selected, for
each smoothing method. In the case of Eq. (4), the chosen
value of α was 0.8, and for both Eq. (7) and Eq. (9), it was
0.6.

Once all hyper-parameters were tuned by means of cross-
validation over the training data, the character HMMs, the
lexicon and the LM were trained again using the whole training
set. The confusion matrix used to compute P (u|v) in the test
experiments, was built averaging the frequencies from the ten
validation partitions.

Finally, for each test line image, six WGs were obtained
for the following NID values: 1, 3, 5, 10, 20 and 40. All these
WGs were generated using the HTK toolkit [18].

D. Results

Tab. II summarizes the empirical results. For each NID,
Eq. (4), Eq. (7) and Eq. (9) where used to approximate S(u,x)
as described earlier, for OOV queries.

TABLE II. RESULTS ON THE TEST LINES USING DIFFERENT
SMOOTHING METHODS AND INPUT DEGREE. THE USED QUERY SET IS THE

WHOLE TEST VOCABULARY.

Mth. / NID 1 3 5 10 20 40

AP (%)

None 38.9 53.6 55.0 55.4 55.6 55.6
Eq. (4) 41.5 56.3 57.5 57.7 57.9 57.8
Eq. (7) 43.0 56.6 57.7 57.9 58.0 58.0
Eq. (9) 43.5 57.1 58.3 58.6 58.8 58.8

MAP (%)

None 19.8 27.5 28.1 28.7 29.0 29.0
Eq. (4) 28.3 42.8 43.7 44.6 44.8 45.0
Eq. (7) 32.0 44.7 45.7 46.2 46.6 46.7
Eq. (9) 32.0 44.4 45.5 46.2 46.6 46.7

First, observe that the baseline MAP is much lower than
the AP (29.0% vs. 55.6%, for a NID of 40). This can be
explained because the percentage of OOV keywords is very
large (almost 63%, see Tab. I) and the AP of all these is close
to zero (i.e. the prior probability of relevant events, 0.5%),
which results in a low MAP when averaging the individual
AP across all keywords. On the other hand, the percentage
of relevant events due to OOV is smaller (around 31%, see
Tab. I), and thus, in this particular scenario, the AP is less
affected by the null scores assigned to OOV keywords.

All proposed smoothing methods bring an improvement
of the global performance over the baseline WG-based KWS
system. Moreover, during cross-validation, the confidence in-
tervals at 95% for the AP metric were around ±1.1% for all
methods. In the case of the MAP metric, these confidence

intervals were ±0.8%. Thus, assuming that the confidence
intervals are similar on the test set, the improvement brought
by all the smoothing methods is statistically significant for
both AP and MAP metrics.

The frame-level smoothing methods (Eq. (7) and Eq. (9))
offer a significant improvement over the simple line-level
smoothing (Eq. (4)), when the MAP metric is considered.
However, in terms of AP, the achieved improvement is in the
borderline of statistical significance.

Observe that the proposed length-independence error
model (Sec. IV-D) is critical to achieve the best possible
results, in terms of AP, using the frame-level smoothing. For
instance, in the case of the biggest word-graphs, the score-level
smoothing offers an AP of 57.8% and the basic frame-level
smoothing offers 58.0%. However, this correction boosts the
AP to 58.8%. Also, it does not affect the MAP metric very
much (46.7% in both frame-level cases).

This is due to the fact that the proposed stochastic similar-
ity measure suffers from the problem stated in Sec. IV-D: the
greater the length of a keyword v is, the lower its maximum
similarity probability is, and so, the resulting KWS scores.
Thus, when all events are considered together in order to
compute the AP metric, relevant events of long keywords
may have a lower score than other shorter keywords, which
damages the AP. This effect is diminished when using the
proposed correction. MAP is not affected by this, since it only
considers events from a single keyword, and then averages the
results.

Finally, as a demonstration, Fig. 4(a) and Fig. 4(b) show
two lines spotted as result of two different OOV queries. The
line in Fig. 4(a) obtained the highest score for the keyword
“contemporanea”, which is the true word in the image. Other
OOV keywords have much lower scores in that line, as
expected. However, Fig. 4(b) shows an example of a false
positive where the keyword “observar” got a higher score
than the correct keyword “observo” (both OOV), but they are
actually very close and much higher than other OOV keywords.

VI. CONCLUSIONS

Three different methods for smoothing the score of OOV
keywords in WG-based KWS have been presented. One of
the methods is based on smoothing directly the final line-
level scores given by the baseline WG-based method, while
the other two methods go one step beyond and use the frame-
level word-posterior of the words included in the WGs and a
similarity between these words and the queried keyword, using
a stochastic error correction model.

All three methods significantly improve the global per-
formance over the baseline system. The line-level smoothing
offers a relative improvement of 4% in AP and 55% in MAP,
while the best frame-level smoothing method offers a relative
improvement of 6% in AP and 61% in MAP, bringing the
system to usable levels.

One of the benefits of this smoothing technique is that it is
free for indexed keywords, in the sense that it does not affect
the performance on them. Since the search engine stores a
list of indexed keywords, it can decide whether to apply the

contemporanea

contenia

pedaneamonte

(a) S(“contemporanea”,x) = 0.0828,
S(“monte”,x) = 2.03 · 10−7, S(“contenia”,x) =
8 · 10−9, S(“pedanea”,x) = 10−9. AP = 100%.

observar

observo

obtuvo

ofrece

(b) S(“observar”,x) = 0.1168, S(“observo”,x) =
0.0719, S(“ofrece”,x) = 3.86 · 10−5,
S(“obtuvo”,x) = 1.25 · 10−6. AP = 50%.

Fig. 4. Smoothed scores of different OOV keywords using Eq. (9). The query
is marked in italic, and the ground-truth in bold. Fig. 4(a) shows an example
where the smoothing worked as expected. In Fig. 4(b), the score of the query
was over-estimated. The AP for each query is also shown.

proposed smoothing or not, so the gain in performance on
OOV keywords is neat and independent from other keywords.

On the other hand, the introduced smoothing methods
provide much faster lookup times than using a filler model.
However the latter typically offers a better performance for
OOV, suggesting that a mixed approach using WGs for regular
keywords, and different smoothing techniques of WGs and
the filler models for OOV could be used to provide the user
with different degrees of speed and accuracy. Exploring such
a KWS architecture constitutes an interesting line for further
research.

Other lines of future work have arisen from these experi-
ments, for instance, improving the training of the similarity
probability P (u|v) by using an EM training algorithm, as
proposed in [14]. Also, a better modeling of this similarity
probability should be investigated, since it is too sensitive to
the length of both u and v, which causes undesirable effects
on the KWS scores. The proposed solution is just a heuristic
and a fundamentally better model should be pursued.

Finally, the proposed approach could be used to smooth
not only the OOV keywords, but more generally, the score of
any keyword which is not present in the WGs (for instance,
when such keyword is pruned due to the value of the NID
parameter). This could be very useful to reduce the size of
WGs and thus, improving the indexing times of the proposed
method, since the WG generation time is one of the main
drawbacks of the WG-based KWS approach, which is mainly
affected by the NID parameter, according to [5].

ACKNOWLEDGMENTS

This work was partially supported by the Spanish MEC under
the STraDA research project (TIN2012-37475-C02-01), by the

Generalitat Valenciana under the grant Prometeo/2009/014,
and through the EU 7th Framework Programme grant tran-
Scriptorium (Ref:600707).

REFERENCES

[1] A. H. Toselli, E. Vidal, V. Romero, and V. Frinken, “Word-graph
based keyword spotting and indexing of handwritten document images,”
Universidad Politécnica de Valencia, Tech. Rep., 2013.

[2] ——, “Word-Graph Based Keyword Spotting in Handwritten Document
Images,” 2013, under review.

[3] A. Fischer, A. Keller, V. Frinken, and H. Bunke, “Lexicon-free hand-
written word spotting using character HMMs,” Pattern Recognition
Letters, vol. 33, no. 7, pp. 934 – 942, 2012, special Issue on Awards
from ICPR 2010.

[4] A. H. Toselli and E. Vidal, “Fast HMM-Filler approach for Key Word
Spotting in Handwritten Documents,” in International Conference on
Document Analysis and Recognition (ICDAR’13), Aug. 2013, accepted
for publication.

[5] ——, “Word-Graph based Handwriting Key-word Spotting: Impact of
Word-Graph Size on Performance,” 2013, accepted to be presented in
DAS.

[6] L. Likforman-Sulem, A. Zahour, and B. Taconet, “Text line segmen-
tation of historical documents: a survey,” International Journal on
Document Analysis and Recognition, vol. 9, pp. 123–138, April 2007.

[7] V. Romero, A. H. Toselli, and E. Vidal, Multimodal Interactive Hand-
written Text Transcription, ser. Series in Machine Perception and
Artificial Intelligence (MPAI). World Scientific Publishing, 2012,
http://www.worldscientific.com/worldscibooks/10.1142/8394.

[8] I. Bazzi, R. Schwartz, and J. Makhoul, “An Omnifont Open-Vocabulary
OCR System for English and Arabic,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 6, pp. 495–504, 1999.

[9] A. Vinciarelli, S. Bengio, and H. Bunke, “Off-line recognition of
unconstrained handwritten texts using HMMs and statistical language
models,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 6, pp. 709–720, june 2004.

[10] A. H. Toselli, A. Juan, D. Keysers, J. González, I. Salvador, H. Ney,
E. Vidal, and F. Casacuberta, “Integrated Handwriting Recognition
and Interpretation using Finite-State Models,” Internationa Journal of
Pattern Recognition and Artificial Intelligence, vol. 18, no. 4, pp. 519–
539, 2004.

[11] F. Jelinek, Statistical Methods for Speech Recognition. MIT Press,
1998.

[12] L. Rabiner, “A Tutorial of Hidden Markov Models and Selected
Application in Speech Recognition,” Proceedings IEEE, vol. 77, pp.
257–286, 1989.

[13] F. Wessel, R. Schluter, K. Macherey, and H. Ney, “Confidence measures
for large vocabulary continuous speech recognition,” IEEE Transactions
on Speech and Audio Processing, vol. 9, no. 3, pp. 288–298, mar 2001.

[14] J.-C. Amengual and E. Vidal, “On the estimation of error-correcting
parameters,” in Pattern Recognition, 2000. Proceedings. 15th Interna-
tional Conference on, vol. 2, 2000, p. 883?886.

[15] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

[16] S. Robertson, “A new interpretation of average precision,” in Proc. of
the International ACM SIGIR conference on Research and development
in information retrieval (SIGIR ’08). New York, NY, USA: ACM,
2008, pp. 689–690.

[17] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[18] S. Young, J. Odell, D. Ollason, V. Valtchev, and P. Woodland, The
HTK Book: Hidden Markov Models Toolkit V2.1, Cambridge Research
Laboratory Ltd, Mar. 1997.

[19] R. Kneser and H. Ney, “Improved backing-off for N-gram language
modeling,” in International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’95), vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, 1995, pp. 181–184.

