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Abstract—We endeavor to perform very large scale indexing of
an ancient German collection of manuscript parish records. To
this end we will compute “probabilistic indexes” (PIs), which are
known to allow for very accurate and efficient implementation of
(single-)keyword spotting. PIs may become prohibitively large for
vast manuscript collections. Therefore we analyze simple index
pruning methods to achieve adequate tradeoffs between memory
requirements and search performance. We also study how to
adequately deal with the large variety of non-ASCII symbols
and handwritten word spelling variations (accents, umlauts, etc.)
which appear in this kind of historical collections. Finally, and
most importantly, since most of the images of the collection
we aim to index are handwritten tables, we explore the use
of PIs to support structured queries for information extraction
from untranscribed handwritten images containing tabular data.
Empirical results on a small, but complex and representative
dataset extracted from the collection considered confirm the
viability and adequateness of the chosen approaches.

I. INTRODUCTION

Libraries, archives and other cultural institutions all over the
world are making accessible large amounts of (untranscribed)
digitized handwritten documents. This fact is spurring the
development of handwriting processing technologies; namely
automatic/assisted handwritten text recognition (HTR) and
keyword spotting (KWS), to provide access to the textual
contents of the images. Examples of the kind of untranscribed
documents requiring urgent text access to their contents are
birth, marriage, and death records, military draft records, court
records, census records, property registers, etc.

Here we deal with a German handwritten parish record
collection (C. XVI-XVIII), held by the Passau Diocesan
Archives. It features baptism, marriage and death records such
as those shown in Fig.1. Aiming at allowing textual search and
at extracting information contained in these records, we adopt
the probabilistic indexing and search approach already applied
to other old, vast document collections such as Chancery [1].

Here, we present empirical work on a relatively small but
fully representative dataset extracted from this collection as a
preparatory step towards undertaking the whole indexing pro-
cess. In this work, we have identified and provided adequate
solutions to the following two issues: a) a large variety of non-
ASCII symbols appear in the images which may be difficult to
be typed on modern keyboards; b) slightly different spelling
variations of handwritten words (e.g., accents, umlauts, etc.)
entail a waste of indexing probability mass which may signif-
icantly hinder search performance.

Besides reporting spotting results for single-word queries,
an important contribution of this work is to explore the use of
PIs to support structured, multiple-word queries aiming at in-
formation extraction from records consisting in untranscribed
handwritten tables.

II. HANDWRITTEN PASSAU PARISH RECORD COLLECTION

The dataset provided by the Passau Diocesan Archives con-
tains information about the parishioners who were baptized,
who married and who died within the geographic boundaries
of the various parishes of the Diocese of Passau. The scans
originate from more than 100 pastoral districts with their own
record keeping, which started in the late 16th century by the
order of the Church and is carried out today.

The 289 images of the dataset used in this work (see
Sec. II-B) were selected from a subset of 57 222 scans of
more than 800 000 sacramental register images1. This dataset
samples the full collection and demonstrates the evolution of
the three record types over time. The images show a great
variety in the evolution of handwriting, record keeping and
more and more standardized table forms introduced in the
early 19th century. Examples of images from this dataset are
shown in Fig. 1.2

Each record in the register books refers to a sacramental
event and therefore provides a reference to the person, who
was baptized on a given day, a couple, which was engaged
and later married, or the person who died. Besides the names
of the individual, references to occupation, locations of living,
priests and witnesses or doctors are given. In the baptismal
and wedding entries, also the names of the parents are kept
and, in death records, the illnesses and reason of death are
recorded.

Therefore, the register books are not only of interest to
family researchers, who explore their personal history, but
also demonstrate the social, economic or humanitarian history.
The sacramental records of the Passau Diocesan Archives are
accessible through a database3 developed by the Archives.

A. Transliteration
This (or other) ancient German record collection(s), gener-

ally contain large numbers of non-ASCII symbols. In addition,

1Openly available at http://data.matricula-online.eu/de/deutschland/passau
2The ground-truthed data set is publicly available to download from zenodo:

http://doi.org/10.5281/zenodo.1296322
3http://gendb.bistum-passau.de



Fig. 1. Some page image examples of the PASSAU dataset.

rather inconsistent slightly different spelling variations of the
same word (e.g., accents, umlauts, underdots, tie bar, etc.)
appear in the images (and often also in ground truth, reference
record transcripts). In this dataset, the character set used for the
reference transcripts accounts a total of 263 UTF-8 different
symbols, most of which are/contain non-ASCII characters
corresponding to archaic symbols used in old German writing.
It is worth noting that most of such characters can not be typed
on standard keyboards.

A common practice in conventional search engines and key
word spotting alike is to retrieve all instances of a given
query without matter of spelling variations. To this end, every
character or symbol is transliterated by case folding and, if
necessary, by removing diacritics and mapping non-ASCII
symbols onto their ASCII equivalents. The benefits are two-
fold: a) simplify the composition of queries and b) avoid the
waste of probability mass which often leads to degrade search
performance. Table I shows examples of applied character
transliterations with which the number of different characters
in the reference transcripts was reduced to from 263 to 102.
The impact of transliteration is studied in Sec, V.

TABLE I
EXAMPLES OF CHARACTER TRANSLITERATION.

Remov. Diacrit. Non-ASCII to ASCII
ċ, č, c̾ C Æ, æ AE ĳ II ŋ EN
è, ē, ë E Œ, œ OE ß SS ƍ US
m̄, m̌, ṃ M p̖, p̾ PRO đ DE δ DER

B. Experimental Dataset and Training/Test Partition

Table II shows important details of the 289 images dataset
used in this work. 179 images were selected for training, 21
for validation and the remaining 89 for testing. All these three
partition blocks contain a similar proportion of images from
documents dated before and after 18th century in order to cope
with the most important variations of handwriting styles and
record and table formats.

The “Test” set of images is used for plain, single-word
KWS experiments, while “TabTest” is a subset of “Test”
containing only tabular data images, generally lying across
two contiguous pages as in two of the examples of Fig. 1. It
is used to measure the performance of structured multiword
queries aimed at information retrieval from table images.

TABLE II
THE PASSAU EXPERIMENTAL DATASET.

Train+Val Test TabTest

Number of pages 200 89 44
Number of lines 29 314 16 376 11 710
Running words 72 848 37 354 21 027
Running words excluding punctuation – 26 709 15 141
Lexicon size 12 381 6 532 3 455
Number of different characters 220 187 119

Lexicon size after transliteration 11 160 5 801 3 141
Number of transliterated different chars 99 87 73

III. PROBABILISTIC INDEXING AND SEARCH

The probabilistic framework which supports the proposed
indexing and search approaches is outlined in this section.

A. From Filler-based KWS to Probabilistic Indexing

The Filler approach to KWS is among the most popular
and successful techniques for training-based, query-by-string,
lexicon-free and segmentation-free KWS. It was first proposed
for handwriting KWS in [2], using optical character hidden
Markov models. A method based on related ideas was also
developed for recurrent (BLSTM) neural network optical char-
acter models [3].

In its original form, the Filler approach only produces
moderately accurate KWS results. Moreover, it incurs a very
high computational cost for the search of each given key-
word. The latter shortcoming was much alleviated in [4],
by precomputing character lattices (CL) which allow up to
98% reductions in search time, with identical KWS accuracy.
Better accuracy was achieved in [5], by incorporating a 2-
gram character language model to model lexical-like context,
but at the expense of an even larger search time. Later, KWS
accuracy was further increased significantly in [6] using 6-
gram character language models, while also keeping a low
search cost by using the CL-based technique introduced in [4].

In [7] a probabilistic interpretation of the Filler approach
was presented which showed that the log-likelihood ratio
word confidence score used in the Filler approach is in fact
equivalent to a simple, Viterbi approximation to the relevance
probability (RP) P (R | cv,x), where R is a binary random
variable which models whether an image region x is relevant,
or not, for a query keyword v, formed by the concatenation of
characters c1, c2 . . . , cm

def
= cv . The RP concept was introduced

and is commonly used in the field of information-retrieval [8]
and it was also implicitly adopted in the successful approach
to lexicon-based KWS presented in [9]. The developments
of [7] also led to an accurate way of computing the true
P (R | cv,x), allowing the new approach to significantly
overcome KWS results of traditional Filler approximations.
These improvements where consolidated in [10] where, using
N -gram character language models, the KWS accuracy was
further improved while keeping the low search times of
previous methods based on CLs.

However, the methods of [10] still entail significant compu-
tation load on the CL of each image-region for each query
keyword. Even though it is very much faster than all the



Filler versions not based on CLs, computing time still becomes
completely prohibitive for very large text image collections.

To overcome this limitation a (probabilistic) word index
could be used, as in the lexicon-based approach of [9].
However, lexicon-free KWS can not rely on any a-priory fixed
lexicon because it must support queries consisting of arbitrary
character sequences. Of course, an ideal, oracle-based system
should only index character sequences corresponding to words
which do appear in the image collection to be indexed. Then,
if a non-indexed character sequence is queried, the system
would just assume it has a null RP.

Obviously, using an oracle is not an option. But from the
huge amounts of different, probabilistically scored character
sequences contained in the CL of an image region x, one can
extract some, or many, sequences which have a non-negligible
probability of being actual words written in x. Then these
sequences, which we refer to as “pseudo-words”, can be easily
indexed, along with the corresponding RPs and geometric
information (bounding boxes), to support extremely fast search
performance. Even though only a finite number of pseudo-
words can be indexed, the approach can properly be considered
lexicon-free: Clearly, any character sequence can be queried,
although those which have negligible probability of actually
being written in the text images will just get a null RP.

This idea was very successfully used in [1] to index the
iconic French Chancery Collection, containing 80 000 images
of densely handwritten text in medieval French and Latin. The
resulting probabilistic index (PI) supports almost instantaneous
full free-text search over the whole collection and is now avail-
able for public use at http://prhlt-kws.prhlt.upv.es/himanis.

B. Building the Probabilistic Index
In this work convolutional and recurrent neural networks

(CRNN) are used for optical character modeling. Specifically,
we employed the HTR Laia Toolkit [11] based on the Torch
machine learning platform. Adopted CRNN architecture is
commented is Sec. IV-C.

After training, the CRNN computes sequences of char-
acter posterior probabilities from a text line image, previ-
ously cleaned and contrast-enhanced using a Sauvola’s based
method [12], and normalized to 64-pixel height maintaining
the aspect ratio.

Lexical and linguistic context is explicitly modeled by
means of statistical character N -grams, estimated using the
training image transcripts4 and represented as a weighted
finite-state transducer. The CRNN output character probabili-
ties, scaled with character priors, are then incorporated to the
transducer edges. The required CLs are finally obtained by
beam search Viterbi decoding using the Kaldi toolkit [13].

The CL obtained from a given text line image, x, represents
a huge number of transcription hypotheses (in the form of
character sequences, c), along with their corresponding proba-
bilities and geometric character boundaries. As discussed in [9]
(see also [10]), it provides a good approximation to the joint
probability distribution p(c,x).

4With the SRILM Toolkit: http://www.speech.sri.com/projects/srilm

Finally, following the CL-based indexing method outlined
in Sec. III-A, a set of n-best scored word-like subpaths are
extracted from the CL. Such subpaths define the character
sequences referred to as “pseudo-words”, along with their
geometric locations and the corresponding RPs [1]. These
three data items are then stored in the resulting PI.

Sec.IV-C provides details about (meta-)parameters adopted
in each step: CRNN, CL generation and RP computation.

C. Structured Multi-Word Queries

As shown in [14], a PI provides adequate support for
KWS queries consisting of boolean (AND, OR, NOT) com-
binations of multiple keywords. Here we extend these ideas
to support structured multi-word queries, aimed at informa-
tion retrieval in text images containing tabular data. More
specifically, we explain how to deal with queries of the
form “〈column-heading, column-content〉”, where
column-heading is an AND combination of table head-
ing words and column-content is a (single) keyword.
For example, the query “〈NAMEN VERSTORBENEN, WOLF〉”
(“〈DECEASED NAME, WOLF〉” in English), should retrieve the
handwritten word “Wolf ” which appears in the third row of
the first column of the top-left image in Fig. 1 (see also Fig. 2
for a zoomed view and additional details).

Fig. 2. Geometric reasoning for the column-wise multi-word structured query:
“<NAMEN VERSTORBENEN, WOLF>”.

The retrieval process is carried out in two steps for each
table image. First, column-heading words with RP higher
than the given threshold τ are retrieved. Simple geometric
restrictions are applied in this step: candidate spots must be
close enough to each other and all must loosely be located in
upper regions of the image. This is supported by the location
information (word bounding boxes) stored in the image PI.
Let h

def
={h1, h2 . . . , hI} be the set of column-heading query

words. Abusing the notation, each hi will be also understood
as the boolean event that hi is relevant for some image region.
Let R(hi) denote the RP of hi. Note that repeated instances
or spots of some of these words may have been retrieved
in the image region of a column-heading. Let si1, . . . , siJi

denote the Ji≥ 1 different spots of the query word hi and
let R(sij)

def
=P (R | chi

,xij) be the RP of the word hi in the
image location xij , where chi is the character spelling of the
word hi (cf. Sec. III-A). Then, according to [14], the RP of



the AND combination for the words in h is computed as:

R(h) = R(h1 ∧ h2 · · · ∧ hI)
≈ min

1≤i≤I
R(hi) ≈ min

1≤i≤I
max

1≤j≤Ji

R(sij) (1)

Second, the column-content word v is searched for through
the column-wise regions delimited by the horizontal span of
the spotted column-heading word bounding boxes (see Fig. 2).
Again, only spots with RP higher then τ are retrieved and the
search is geometrically supported by the location information
stored in the image PI. Let v1, . . . , vK , K ≥ 1, be the different
spots of v retrived in column locations x1, . . . ,xK and let
R(vk)

def
=P (R | cv,xk) (cf. Sec. III-A) be the RP of the k-

th spot. From the discussion in [14], the RP of the column-
content word v in the considered column is computed as:

R(v) ≈ max
1≤k≤K

R(vk) (2)

Finally, again according to [14], the RP of a column-wise
structured multi-word query is computed as:

R(〈h, v〉) = R(h ∧ v) ≈ min
(
R(h), R(v)

)
(3)

Following the same ideas, more complex boolean combina-
tions can be straightforwardly supported. Row-wise and word-
sequence combinations can be supported too by using the
location information of the spotted words. However, the study
of these more complex queries is left for future research.

IV. EXPERIMENTAL SETUP

A. Evaluation Measures

The standard recall and interpolated precision measures [8]
are used here. Results are reported in terms of both global and
mean average precision (AP and mAP, respectively). While
the AP is computed from a global ranked list containing all
the results from all queries, the mAP is the mean of the APs
of the isolated queries. Both are standard quality measures of
ranking, but the AP also evaluates consistency of the scores
across multiple queries. They are sometimes known as micro
and macro AP [15]. Moreover, we will report the maximum
recall achieved with at least 10% precision (MxRc10).

Finally, we also evaluate naive KWS based on 1-best HTR
transcripts. Since no scores are available, the RP curve would
degenerate to a single point. Yet, the interpolated precision
allows computing both AP and mAP.

B. Query Sets

Several criteria can be adopted to define a set of keywords
to be used for KWS evaluation. In this work we adopt one of
the most common criteria, where most of the words seen in the
test set are selected as keywords. Besides being a meaningful
choice from an application point of view, it ensures that all
the keywords are relevant (appear in one or more test images),
thereby allowing mAP to be properly computed.

For single-keyword query spotting, all the words longer
than 1 character of the test-set lexicon are used, making a total
of 5 725 transliterated query words. On the other hand, for

multi-word queries we asked a user to provide application-
meaningful queries of the form “〈column-heading,
column-content〉”. The user aimed these queries at
obtaining information registered in some of the 44 test-
set images which contain tabular data. A set of 363
queries of this type was collected. The number of different
words in the column-heading parts of these structured
multi-word queries range from 1 to 6, while all the
column-content parts contain just 1 word. Examples of
these queries are: 〈ORT, STEINERLEINBACH〉, 〈TAUF TAG, APRIL〉

〈KRANKHEIT ARZT, FRAISEN〉, 〈NAMEN DES BRAEUTIGAMS, JOSEF〉,

〈NAMEN DER BRAUT, MARIA〉, 〈TAG MONAT JAHR TODES, 1879〉, etc.

C. System Setup

The CRNN architecture adopted here consists of four con-
volutional layers followed by three recurrent bidirectional long
short-term memory layers. Regarding layer parameter setting
(dropout, maxpooling, activation function, etc.), we employed
the default ones of the HTR Laia Toolkit [11], with exception
of the ones corresponding to number of convolutional features:
12, 24, 48 and 48, and the ones of convolutional kernel sizes:
7×7, 5×5, 3×3 and 3×3. A softmax output layer computes
the probabilities of each character in the training alphabet plus
a non-character symbol.

The CRNN was trained with the RMSProp method [16]
on minibatches of 32 examples, using a base learning rate of
0.0005, to minimize the CTC cost function [17]. We stopped
the optimization procedure when the error on the development
set did not decrease for 50 epochs. Two optical character sets
were trained (see Tab. II): one of 220 characters using the origi-
nal transcripts and another of 99 characters using transliterated
transcripts. These sets were used in the experiments referred
to as late and early transliteration, respectively.
N -gram character language models were estimated (with

Kneser-Ney back-off smoothing) [18]) from the original and
from the transliterated transcripts. Depending where transliter-
ation is applied, we distinguish between: early transliteration
and late transliteration. The latter is applied directly to CLs,
while the former is applied from the beginning by training
the CRNN using transliterated transcripts. According to this
distinction, four N -gram character language models were
estimated: A 6-gram model was used for late transliteration,
while 0-gram, 3-gram and 6-gram models were used in the
early transliteration experiments.

The trained CRNN, along with each character language
model, were subsequently used with the Kaldi decoder to
produce CLs for all the test-set image lines. One decoding pass
with beam set to 15 was carried out in all the cases. In the late
transliteration experiments, the character sequences associated
with the edges of the CLs obtained using the original character
set, were transliterated as described in Sec. II-A.

Using the CLs produced (and transliterated when appropri-
ate) as described above, diacritic-free and case-folded PIs were
obtained as explained in Sec. III-B.



V. KWS PERFORMANCE RESULTS

Two sets of experiments were carried out. The first one is in-
tended to evaluate single-keyword KWS performance for early
and late transliteration and different character N -gram orders.
The second one focuses on assessing search performance for
structured multi-word queries aimed at information extraction.

A. Single-Keyword Queries

Table III reports AP, mAP and MxRc10 results obtained for
CLs produced with early and late transliteration and different
N -gram orders. In addition, results are also reported for
“degenerate lattices” consisting of a single, linear path with the
plain 1-best hypothesis of an HTR recognizer using the same
optical and 6-gram language models as those used for KWS.
This is equivalent to naive KWS based on plain-text keyword
searching in the single-best HTR transcripts. The character
error rates of these transcripts were 16.6% and 20.9% for the
early and late transliterations, respectively.

TABLE III
KWS PERFORMANCE FOR SINGLE-WORD (PLAIN) AND STRUCTURED

MULTI-WORD (STRUCT) QUERIES, FOR EARLY/LATE TRANSLITERATION
AND CLS GENERATED WITH DIFFERENT N -GRAMS ORDERS (LM).

Transliteration Latt-type Char LM AP mAP MxRc10

PLAIN

Early CLs none 0.701 0.661 0.861
Early CLs 3-gram 0.712 0.677 0.876
Early CLs 6-gram 0.746 0.692 0.886
Late CLs 6-gram 0.692 0.662 0.854

Early 1-best 6-gram 0.559 0.387 0.680
Late 1-best 6-gram 0.492 0.331 0.613

STRUCT Early CLs 6-gram 0.905 0.921 0.955

Figs. 3 shows interpolated recall-precision (R-P) curves
corresponding to early and late transliteration, along with a
single R-P point, corresponding to naive KWS based on 1-best
recognition hypotheses obtained with early transliteration. A
character 6-gram language model was used in all the cases.

As observed, all the results improve with increasing N -
gram order, assessing the importance of leveraging linguistic
context. The benefits of transliterating right from the beginning
of the indexing process are also clear from the results. Finally,
results confirm that only relatively poor performance can be
achieved through naive KWS based on 1-best HTR transcripts.

B. Structured Multi-Word Queries for Information Retrieval
AP, mAP, MxRc10 results for structured multi-word queries

aimed at information retrieval in tabular text images are
reported in the last row of Tab. III and in Fig. 3.

Retrieval performance is clearly much better in this case
than in the case of single-keyword queries. Note that the
single-keyword query set encompassed all the test-set words,
including function words and many other rather “uninterest-
ing” words. In contrast, the structured queries used in this
experiment are real queries issued by a user aiming to retrieve
real data from the text images. Therefore, while the conditions
are not properly comparable, we think the results obtained with
natural queries should be considered more realistic.
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Fig. 3. Recall-precision (R-P) curves for single-keyword KWS using CLs
obtained with early (ET) and late (LT) transliteration. For ET, a single R-
P point (1B-6g) is also shown for naive KWS based on 1-best recognition
hypotheses. The R-P curve for ET structured multi-word queries (STRUCT)
is also shown. Character 6-gram models were used in all the curves.

Note as well that the very structured nature of these queries
might have also contributed to achieve better performance:
For this kind of queries, several words must be successfully
spotted in an image and geometric constraints further limit the
set of final candidate spots. This improves precision because
many possible false alarms just fail to survive the underlying
relational and geometric conditions.

VI. PROBABILISTIC INDEX TRIMMING

As previously commented, for vast manuscript collections,
PIs may become huge and require prohibitively large amounts
of storage. On the other hand, because of their lexicon-free
indexing construction, PIs contain large quantities of pseudo-
words which probably will never be used in any real query.
It is important to understand that the (large number of)
possibly useless pseudo-word spots do not harm precision-
recall performance, but do result in large storage overheads.
However, it is this very overhead what grants the flexibility
of fast searching for arbitrary character strings, rather than
specific words (as in lexicon-based KWS).

Ideally one would like to get rid of useless pseudo-words
and retain only character strings which are likely useful for
information search; but this is like finding a few needles in a
big haystack. Fortunately, it can be observed that most indexed
“rare” pseudo-words have very low RP. Therefore we can try
to use the RP to prune out those spots which do not lead to a
significant negative impact on search performance.

Fig. 4 plots the evolution of single-keyword AP and mAP
for increasing index size reduction, obtained by increasing a
pruning RP threshold (RPT). It can be seen that AP remains
practically invariant to reductions up to about 90%, while mAP
starts to suffer some degradations when more than 40% of the
index spots (those with RP< 106) are pruned out.

Table IV reports PI sizes per page image for conservative
and more aggressive RP thresholds (those shown in Fig. 4),
along with the corresponding relative AP and mAP degra-
dations. The actual amount of storage needed per indexed
page image is also reported, along with the ratio of this
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Fig. 4. Probabilistic Index Pruning: AP and mAP for increasing index size
reduction (in %), obtained by pruning out indexed spots whose RP is lower
than an increasing RP threshold (RPT).

size with respect to the actual average size of the indexed
(JPEG) images. For comparison, two extreme cases in terms
of performance degradation are reported: indexing using 1-
best HTR transcripts and indexing just a hypothetically known
exact lexicon of the collection. The index size is greatly
reduced in both cases, but the 1-best index is largely useless
and the lexicon-based one is only an hypothetical lower bound.

TABLE IV
PROBABILISTIC INDEX MEMORY USAGE AND SEARCH ACCURACY
TRADEOFFS. RATIO IS THE QUOTIENT BETWEEN INDEX SIZE AND

AVERAGE INDEXED IMAGE SIZE (1 823 KB IN THE PASSAU DATA SET).

Spots/page KB/page Ratio ∆AP ∆mAP

No trimming 56 953 897 0.490 0.000 0.000
Conservative trimming 35 412 552 0.304 0.000 -0.003
Aggressive trimming 22 742 356 0.195 -0.001 -0.011

Naive 1-best indexing 296 5 0.003 -0.187 -0.305

Exact lexicon oracle 2 853 46 0.025 0.000 0.000

VII. CONCLUSIONS

Highly efficient lexicon-free single-keyword KWS has been
shown to be very well supported by Probabilistic Indices.
It has been also shown how these indices can be easily
used to very effectively support structured queries involving
many words, which allow for complex information retrieval
in text images containing tabular data. The techniques used to
obtain the proposed probabilistic indices have been outlined
and evaluated. The empirical work presented constitutes a
preparatory step before undertaking the actual indexing of
a very large collection containing hundreds of thousands of
images of historical handwritten registers.

A real demonstrator of the indexing and search techniques
developed and evaluated in this work is publicly available at
http://transcriptorium.eu/demots/kws-Passau (it allows single-
word and multiple-word boolean queries, but the structured
tabular queries introduced in this paper are not yet supported).
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