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Abstract Lexicon-based handwritten text keyword spotting (KWS) has proven to be
a faster and more accurate alternative to lexicon-free methods. Nevertheless, since
lexicon-based KWS relies on a predefined vocabulary, fixed in the training phase, it
does not support queries involving out-of-vocabulary (OOV) keywords. In this paper,
we outline previous work aimed at solving this problem and present a new approach
based on smoothing the (null) scores of OOV keywords by means of the informa-
tion provided by “similar” in-vocabulary words. Good results achieved using this
approach are compared with previously published alternatives on different data sets.

Keywords keyword spotting, lexicon-based, smoothing, out-of-vocabulary,
handwritten text recognition

1 Introduction

The aim of handwritten text keyword spotting (KWS) is to determine in which doc-
ument images or image regions a given keyword appears with some likelihood. This
work focuses on the case where queries are presented to the system as strings typed
by the user (known as Query-by-String) [21,4,6,29,1,26,12,16,17,25], although an
alternative formulation of KWS, where queries are presented as example images
(known as Query-by-Example) is also very popular in the literature [10,19,11,7,22,
5,3,27]. Query-by-Example approaches are typically training-free and are based on
template (image) matching between the query (example image) and word-sized im-
age regions of the documents.

In this work, we focus on Query-by-String since it presents certain advantages
over Query-by-Example: a) the users do not need any example image to specify the
queries, b) they can use a very similar (or identical) interface to that of conventional
web searching, and c) the indexing schemes typically used (and particularly the one
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we use) allow for very fast lookup times. Notice, however, that the statistical pattern
recognition, training-based KWS approach underlying the work presented in this pa-
per has also been used in Query-by-Example scenarios [27], providing much better
performance than other state-of-the-art Query-by-Example approaches.

In the recent past, methods based on holistic Handwritten Text Recognition (HTR)
technologies have been proposed for Query-by-String KWS in handwritten text im-
ages [4,6,29,26,12,16,17,25]. These methods typically rely on the use of optical,
lexical, language and other statistical models, trained using transcribed handwritten
text images of the considered task.

Particularly, this work follows the approach introduced in [26,25], which uses
a word-level language model, a lexicon and a set of character optical models. For
each word in the lexicon, these models are used to determine how likely is that a
query word is written in given image regions. Using this probabilistic information,
image regions such as lines or pages can be easily indexed to allow simple and ac-
curate search under the so called precision-recall trade-off model. In this model, a
confidence threshold is more or less explicitly specified by the user in order to trade
accuracy of the spotting results (precision) for some guarantee that no regions con-
taining the keyword are missed (recall).

This method provides very much faster searches than traditional lexicon-agnostic
approaches, such as the HMM-Filler [4] or KWS using character-level bi-directional
recurrent neural networks (BLSTM) [6]. Moreover, the Precision–Recall performance
provided by lexicon-based methods is generally much better than that of the tradi-
tional HMM-Filler and comparable with that of BLSTM based KWS [26,25].

An important problem of lexicon-based methods is how to deal with out-of-
vocabulary (OOV) queries: since these methods rely on a fixed vocabulary, deter-
mined during the model training phase, they will give a null score for any keyword
not included in this lexicon.

Here we outline our previous work to deal with this problem and present a new
technique for smoothing lexicon-based KWS scores. We show that this proposal im-
proves the ones presented in [17]. In both cases, a similarity metric between OOV
and indexed keywords is used to approximate OOV KWS scores. We also compare
our new method with [16], which is a combination of lexicon-based and HMM-Filler
systems and provides excellent performance results. However, as shown in our exper-
iments, using the HMM-Filler method leads to much slower query processing, even
when the fast HMM-Filler search technique introduced in [24] is used.

This paper extends our IbPRIA-2015 proceedings paper [18] by providing more
complete outlines of the previous methods [17,16] and a more detailed account of
the new one [18]. It also adds new empirical results to help better understanding the
differences between the smoothing methods described in the paper and the basic ap-
proaches. The paper is organized as follows: Section 2 introduces basic concepts of
the KWS framework used in this work, Section 3 briefly describes previous smooth-
ing methods and presents the proposed method in detail, Section 4 reports the exper-
iments conducted to evaluate this work and compare the results with those obtained
with previously published approaches. Finally, conclusions are drawn in Section 5.
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2 Review of Lexicon-Based Keyword Spotting

The smoothing method proposed in this work (c.f., Sec. 3.3) can be applied to any
lexicon-based KWS approach which provides KWS scores that can be adequatelly
interpreted as relevance probabilities, as discussed below. In order to allow for proper
comparison with results of many of our previous works on KWS, we have chosen to
use the method presented in [26,25].

For each query keyword v and each text line image region, denoted as x, a score
S(x,v) is needed to measure how likely is the event “keyword v is written in x”, or
re-phrased as “text line x is relevant for keyword v”. In [26,25] it is computed as:

S(x,v) def
= max

1≤i≤m
P(v | x, i) (1)

where m is the length of x and P(v | x, i), called frame-level word posterior, is the
probability that the word v is present in the line image x at horizontal position i.
This simple computation tends to provide in practice better KWS scores than other
possible approximations to the true relevance likelihood aimed at.

In order to compute P(v | x, i) for each word in a given lexicon or vocabulary, V ,
and line image, x, a language model and a set of character optical models are needed.
In most previous works, n-grams and Hidden Markov Models (HMM) have been used
for language and character optical modeling, respectively (nevertheless, all the prob-
lems and techniques introduced in this paper also apply to any other lexicon-based
systems using different types of optical character models, such as neural networks).
Using these models, P(v | x, i) can be accurately computed through an extension of
the conventional process used to decode x [26,25].

The required models are trained from moderate amounts of training images, ac-
companied by the corresponding transcripts, using well known statistical estimation
techniques [8]. The lexicon V , on the other hand, is also obtained from the training
transcripts and possibly expanded with additional words obtained from other relevant
texts, if they are available.

In some of the coming sections, rather than an arbitrary score, a probabilistic
interpretation of S(x,v) will be needed. To this end, we observe that, since P(v | x, i)
is a well-defined discrete probability mass function, it is bounded between 0 and 1
and thus it can be properly used to define the following Bernoulli distribution:

P(R | x,v) def
=

{
S(x,v) R = 1

1−S(x,v) R = 0
(2)

where the random variable R represents the event “text line x is relevant for keyword
v”. In order to explicitly assume this probabilistic meaning of S(x,v), from now on
we will refer to it as P(R = 1 | x,v), or simply P(R | x,v).

It is worth pointing out that, for the given lexicon V , P(v | x, i) and thereby
P(R | x,v), can be easily computed during an off-line indexing phase for all v in
V (or for all v for which P(R | x,v) is not negligible). This avoids having to carry
out heavy computations during user’s query lookup and permits extremely fast query
processing (see experiments in Section 4).



4 Puigcerver et al.

3 Out-of-Vocabulary Queries

As briefly mentioned in the introduction, the main drawback of lexicon-based KWS
is its inability to deal with OOV keywords. The underlying problem is that P(R | x,v),
computed using a word-level LM, is null for any word not included in the lexicon V .

In this section, different techniques to mitigate this problem will be explained. In
all the cases, alternative techniques are used to estimate the relevance probabilities
only for keywords u /∈V . That is, the approaches to compute P(R | x,u) discussed in
the coming subsections are only applied for OOV queries. In general, for an arbitrary
keyword w, relevance probabilities are computed as:

P(R | x,w) =

PV (R | x,v) w = v ∈V

P̃(R | x,u) w = u /∈V
(3)

where PV (R | x,v) is the original lexicon-based probability (i.e. Eq. (2)) and P̃(R | x,u)
is the specific solution presented in each subsection.

Two types of approaches to estimate P̃(R | x,u) will be considered: One is to rely
on relevance probabilities available for words v ∈ V which are “similar” to u /∈ V .
The other is to consider u in terms of its character spelling and use a lexicon-free,
character-based KWS method.

In the following equations we will always refer to in-vocabulary keywords with
the variable v, and OOV keywords with u.

3.1 Heuristic Line-level Smoothing

A first attempt to solve the OOV keyword problem was presented in [17], by directly
defining the probability P̃1(R | x,u) of an OOV word u /∈V , based on the probability
PV (R | x,v) of other words v ∈ V and the Levenshtein distance [13] between the
character-sequence representation of keywords u and v :

P̃1(R | x,u)
def
= max

v∈V
PV (R | x,v)1−α exp(−d(u,v))α (4)

where d(u,v) refers to the Levenshtein distance [13] between character representa-
tions of keywords u and v. The parameter α ∈ [0,1] is used to fine-tune the importance
of the similarity measure, in the same way that the grammar scale factor is used to bal-
ance the importance of optical and language models in HTR and Automatic Speech
Recognition (ASR). In this case, when u and v are similar, the probability of the in-
vocabulary word v ∈ V , PV (R | x,v), has a greater effect in the resulting relevance
probability. This is achieved by scaling PV (R | x,v) with a factor that exponentially
decays with d(u,v).

Obviously, Eq. (4) can not be properly interpreted in probabilistic terms and is
thus presented here just as a intuitively derived heuristic.
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3.2 Heuristic Frame-level Smoothing

In [17], a more formal approach was studied, consisting in smoothing the frame-level
posterior probabilities used in [26,25]. As in the previous technique, the smoothing
here is based on word similarities between character representations of in-vocabulary
words, v, and the OOV keyword, u. A main difference here is that smoothing is car-
ried out at the frame level; that is, the distribution P(v | x, i),v ∈ V , introduced in
Sect. 2 is smoothed in order to give some probability mass to any keyword u /∈ V .
Before, we defined P(v | x, i) as the probability that (part of) word v is written at
frame i in the image line x. However, the modeling of this probability distribution
was biased since, being restricted to the given vocabulary V , it is not defined over all
sequence of characters. Thus, a new probability distribution, similar to the previous
one, is introduced instead: P(u | x, i), which is defined ∀u∈ Σ ∗. The proposed method
marginalizes P(u | x, i) among all keywords in V :

P(u | x, i) = ∑
v∈V

P(u,v | x, i) = ∑
v∈V

P(v | x, i) ·P(u | x, i,v) (5)

It should be realized that the u and v in P(u,v | x, i) come from two different random
variables, thus this probability should not be interpreted as “probability that word u
and word v are written at the i-th frame of x”, but as “probability that the sequence of
characters u is written and the word v was recognized at the i-th frame of x”.

It can be assumed that the probability of u is conditionally independent of x and
i, given v. This is because the similarity between a sequence of characters u and a
word v does not depend on how v is rendered in the image x. While this might not be
strictly true, it simplifies the complexity of the formulation. Then, Eq. (5) reduces to:

P(u | x, i) ≈ ∑
v∈V

P(v | x, i) ·P(u | v) (6)

The distribution P(u | v) is a probabilistic model of string similarity. Here we fol-
low a traditional stochastic error correction model (see e.g. [2]) using the classical
definition of symbol insertion, deletion and substitution operations, as in the Lev-
enshtein distance. For each word v ∈ V , let v = v1, · · · ,vm, vi ∈ Σ ,1 ≤ i ≤ m, be its
character sequence representation, where Σ is the character alphabet. A stochastic
finite-state machine (FSM) can be built with states q0,q1, · · · ,qm, where q0 is the ini-
tial state and qm is the final state. There are edges joining consecutive states, which
represent the operations of substitution and deletion of a symbol vi, and loops for each
state representing the insertion of new symbols. Observe that this FSM can accept any
string in Σ ∗. Figure 1 shows the FSM built for the string v =“aab”.

Weights are associated to edges in the FSM which allow us to compute P(u | v) by
means of a forward-like algorithm. These weights, interpreted as transition probabili-
ties, are estimated from the frequencies of the corresponding edit operations given by
the minimum Levenshtein distance alignment [13] of a training set of pairs of strings.

As discussed in [17], this modeling for P(u | v) presents some problems, the most
notable one is that the value of P(u | v) decays with the length of the strings u and
v, since it is a discrete probability mass function defined over an infinite space. In
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Fig. 1: FSM used to compute P(u | “aab”),∀u ∈ Σ ∗. Erroneous edit operations are
represented by dashed lines.

order to alleviate this problem, in [17] a heuristic modification of Eq. (6) is proposed
as follows:

P̃(u | x, i) def
=

∑v∈V P(v | x, i) · f (u,v)α

1+∑v∈V P(v | x, i) · f (u,v)α
(7)

where α ∈ [0,∞) is again an hyperparameter introduced to weight the importance of
the similarity between u and v, and f (u,v) is a similarity factor (it is not a probability
mass function anymore), defined as:

f (u,v) =
P(u | v)

maxu′∈Σ∗ P(u′ | v)
(8)

It is worth noting that these heuristics are not applied because P(u | v) or P(u | x, i)
are not well normalized. In fact, it can be proven that P(u | v) modeled by a FSM is
a well-defined probability mass function [2]. Once proven that, it is trivial to show
that P(u | x, i) is so as well. However the probability assigned to long sequences by
P(u | v) diminishes exponentially with length, as discussed before, and this ends up
damaging significantly the performance of long keywords in the KWS experiments.
The previous heuristics are introduced explicitly to alleviate this problem and ensure
that P̃(u | x, i) ≤ 1,∀u ∈ Σ ∗, since this is the only requirement to make P̃2(R | x,u) a
valid binary probability distribution, given the definition in Eq. (3).

Using the smoothed frame-level posteriors P̃(u | x, i), a relevance probability for
OOV keywords is computed as in Eq. (1):

P̃2(R = 1 | x,u) def
= max

1≤i≤n
P̃(u | x, i) (9)

It is important to realize that a significant computational load is entailed by Eq. (6-
9) which, in practice, makes this method only suitable for small or moderately sized
document image collections.

3.3 Probabilistic Line-Level Smoothing

In this subsection, we present a new probabilistic line-level smoothing method, pre-
liminary introduced in [18]. It is based on the same intuition as in the heuristic ap-
proach discussed in Sect. 3.1, but it follows a sound probabilistic formulation. More-
over, this method is as fast as that of Sect. 3.1 and does not suffer from the string-
length problems discussed in Sect. 3.2.
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The complex definition of Eq. (7) was introduced mainly to mitigate the decay
of P(u | v) with the lengths of u,v. Here, we follow a less fine-grained smoothing
approach by directly marginalizing P(R | x,u) among all v ∈V :

P(R | x,u) = ∑
v∈V

P(R,v | x,u) = ∑
v∈V

P(R | x,u,v) ·P(v | x,u) (10)

Similarly as in the previous section, observe that u and v come from different random
variables. While u is defined among all sequence of characters (u ∈ Σ ∗), v is defined
only among all words in the lexicon (v∈V ). Taking this into account, P(R,v | x,u) can
be interpreted as the “probability that line x is relevant for the sequence of characters
u and the word v was recognized in it”. Likewise, P(R | x,u,v), would be defined then
as “probability that line x is relevant for the sequence of characters u, given that the
word v was recognized in it”.

Now, we make two fairly natural independence assumptions. First, assume that
v is conditionally independent of x, given u, i.e. P(v | x,u) ≈ P(v | u). Similarly, we
assume that P(R | x,u,v)≈ P(R | x,v). This way, the relevance probability in Eq. (10)
is approximated as:

P̃3(R | x,u)
def
= ∑

v∈V
PV (R | x,v) ·P(v | u) (11)

It should be noted that the similarity probability distribution P(v | u) is the con-
verse of the one used in Section 3.2. Now it must be normalized across all v ∈ V ,
rather than ∀u ∈ Σ ∗. Since the distribution is over a finite set of elements, it can
be defined in arbitrary ways that do not exhibit the probability vanishing problems
explained before. In particular, we choose the following distribution based on the
Levenshtein distance d(u,v):

P(v | u) def
=

exp(−α d(u,v))
∑v′∈V exp(−α d(u,v′))

(12)

In the same way that the previous smoothing methods did, we introduce a parameter
α ∈ [0,∞) to tune the contribution of the similarity measure.

3.4 Combining Lexicon-based and Lexicon-free KWS

This approach, originally presented in [16], simply computes the probability scores
of OOV keywords, u /∈ V , by using an alternative lexicon-free, character-level KWS
model; namely, the popular HMM-Filler approach [4]. It uses two different character
HMMs: a generic “filler” or “garbage” model, f , and a keyword-specific model, ku,
for the keyword u, as depicted in Figure 2.

Both models are composed of optical character HMMs, which are exactly the
same trained for the lexicon-based KWS approach outlined in Sect. 2. Using these
models, a KWS confidence score SF(x,v) is computed by means of the following
equation:

SF(x,v)
def
=

maxq log pkv(q,x)−maxq′ log p f (q′,x)
|v|

(13)
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Fig. 2: “Filler HMM” ( f ) on the left and “keyword HMM” (kv) on the right, built for
the keyword v = “bore”.

where |v| is the length of v, q and q′ are HMM state sequences, and expressions like
maxq logP(q,x) refer to the standard Viterbi decoding log-likelihoods. The subscript
in the P notation refers to the modeling of the likelihood: Pkv is the likelihood given
by the keyword-specific model and Pf is the likelihood according to the “filler”.

In its traditional form, this technique is less accurate and more computation-
ally expensive than lexicon-based methods such as the one outlined in Sect. (2) [24,
26]. However, we have recently proposed a much faster technique to obtain identical
HMM-Filler scores by using character lattices obtained by Viterbi decoding the line
images only with the filler model (i.e., without the expensive use of word-specific
models) [24]. Using this accelerating technique, HMM-Filler can become actually
useful in practice (at least for small and medium sized documents) to deal with (hope-
fully few) OOV queries.

According to Eq. (13), one should realize that SF(x,v) is actually a log-likelihood
with a value in the range (−∞,0]. In order to allow interpretation in terms of a rele-
vance probability, as needed in Eq. (3), a exponentiation function has to be applied,
leading to:

P̃4(R | x,u)
def
= exp(η ·SF(x,u)) (14)

The parameter η ∈ [0,∞) is used to better adjust the conversion of the log-probability
into a [0,1] score, and its value is adjusted using a validation partition, as it was done
with the hyperparameters of the other approaches.

4 Experiments

The experiments conducted to compare the approaches described in the previous sec-
tion are presented now. Two different corpora were used and performance was as-
sessed with two well known metrics which are widely used in the KWS community.

These two corpora vastly differ in terms of vocabulary size and, more importantly,
in the amount of OOV query events. Therefore, the empirical results will allow us to
draw more comprehensive conclusions about the relative capabilities of the proposed
smoothing approaches in heterogeneous KWS scenarios.
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4.1 Performance assessment

Assessment was carried out using the average precision (AP) metric [20], based
on the recall and precision measures. Interpolated precision is adopted to avoid ill-
defined cases which may appear with plain precision [14]. Both precision and recall
are functions of a threshold used to determine whether the score P(R= 1 | x,v) is high
enough to actually assume that x is relevant to v. AP provides a single scalar quality
measure taking into account all possible thresholds for all the keywords considered
in an experiment:

AP =
∫ 1

0
p(r)dr (15)

where p(r) is the global precision as a function of the recall r, considering all queries
and documents.

Additionally, we report the mean average precision (mAP), which is also widely
adopted in the literature. It is computed by averaging individual AP values of each
individual keyword, AP(q).

mAP =
1
|Q| ∑q∈Q

AP(q) =
1
|Q| ∑q∈Q

∫ 1

0
pq(r)dr (16)

where Q is the query set and pq(r) is the precision of the query keyword q as a
function of the recall r.

Since AP is computed globally across all keywords, it can be observed that sys-
tems with a good AP metric provide more consistent KWS score values across dif-
ferent keywords, which is not necessarily true if one looks only at the mAP metric.
Thus we decided to optimize our hyperparameters based on the AP metric.

Finally, we also compared the average time required to compute the different
KWS scores needed for an OOV query, in each corpus. We only considered the OOV
keywords for this comparison, since the scores of in-vocabulary keywords can be
precomputed and the lookup time is extremely small and asymptotically constant (if
hash tables are used, for instance), as mentioned in Section 2.

4.2 Corpora and Query Sets

Two data sets were considered: “Cristo-Salvador” (CS)1 and IAM2 [15].
CS is a small XIX century single-writer Spanish manuscript. We used exactly

the same partitioning as in [24,17]. Since the CS corpus is quite small, we ignored
capitalization and diacritics to build the lexicon and the LM, and performed cross-
validation to tune all parameters.

IAM, on the other hand, consists of English handwritten texts from many writers.
We used the same data partitions used in previous KWS experiments [4,6,24,16].
In addition to the text in the line images, we used three external text corpora (LOB,
Brown and Wellington), to build the lexicon and to train a LM (c.f. Sect. 4.3).

1 https://www.prhlt.upv.es/page/projects/multimodal/cs/index
2 http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
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Since all our experiments were aimed at assessing KWS performance for OOV
keywords, in both datasets, we used the set of words written in the test lines as the
query set. This makes our results not directly comparable with those previously pub-
lished works in which only the the words included in the training set were consid-
ered as keywords (thereby implicitly ignoring the OOV problem). On the other hand,
this allows us to properly compute mAP values, which are only defined for relevant
queries. In the case of IAM, following previous works on this dataset, we subtracted
from the query set all stop words. Table 1 summarizes the most important information
of the corpora.

Table 1: Tables summarizing the corpora used for experimentation.

(a) Basic statistics of the selected databases.

CS IAM

Train Test Train Valid. Test

Running Chars 35 863 26 353 269 270 39 318 39 130
Running Words 6 223 4 637 47 615 7 291 7 197
# Lines 675 497 6 161 920 929

Char Set Size 78 78 72 69 65
Word Lex. Size 2 236 1 671 20 000 2 442 2 488
OOV Lex. Size — 1 051 — 435 437

(b) Details of the query sets used in each dataset.

CS IAM

Line images: N 497 929
Query words: M 1 671 2 209

Line-query events: M·N 830 487 2 052 161
OOV Line-query events 522 347 405 973

Relevant line-query events 4 346 3 446
Relevant OOV line-query events 1 341 496

4.3 Experimental setup

In each corpus, we trained a left-to-right HMM model, with GMM distributions on
the states, for each character included in the training set. The standard embedded
Baum-Welch training algorithm was used [28]. Details about preprocessing, feature
extraction, number of states and mixtures in the GMM, etc. can be found in [26,25]
for the CS dataset, and also [4] for IAM.

Bi-gram LMs with standard Kneser-Ney back-off smoothing [9] were used to
build the lexicon-based systems. In the case of CS, only the transcripts of the training
set were used to train the LM, converting lowercase characters to uppercase. This re-
sulted in a small vocabulary of 2 236 words, and a very large proportion of OOV query
words (close to 50%). For IAM, the LM was trained using the external LBW corpus,
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restricted to the 20K most frequent words (transcripts of test lines were excluded
from this text training set). Using this relatively large vocabulary, the proportion of
OOV keywords was quite small (about 2%).

The computation of Eq. (1) for lexicon-based indexing was carried out with the
help of word graphs (WGs), obtained as a byproduct of conventional Viterbi decod-
ing [26,25]. WGs were generated using the described language and optical models,
with a maximum node input degree (NID) value equal to 40, without any decod-
ing pruning technique. Further details about the lexicon-based method can be found
in [17,16].

On the other hand, in order to speedup the search needed for the HMM-Filler
method, the approach described in [26] was used. In a preparatory phase, a character-
lattice (CL) was obtained for each test line image using only the “filler” HMM. The
maximum NID of these CLs was set to 30. Then, during the search phase, the scores
of each query were computed using the CLs.

We adopted the same hyperparamenter values as in the reference papers [17,16]
for the existing methods. As for our new method (Section 3.3), we tuned the required
hyperparameters using the validation set for IAM, or cross-validation for CS.

Experiments were conducted on a Intel Core 2 Quad Q9550 CPU at 2.83GHz,
running Ubuntu Linux 14.04. All custom software was implemented in C++.

4.4 Results

Table 2 summarizes the main results obtained on the test set of each corpora. The
first row displays the performance obtained using a trivial recognition-based KWS
approach where input images are explicitly decoded by means of a traditional HTR
engine (based on the same HMMs and n-grams used in the rest of the experiments).
In this naive approach a keyword has score 1 if it appears in the HTR transcript, or 0
otherwise. The second row shows the performance of the plain, unsmoothed lexicon-
based KWS approach briefly explained in Sect. 2. Finally, the remaining rows report
the performance using the different smoothing methods.

Table 2: Line-level Average Precision (AP) and Mean Average Precision (mAP) pro-
vided by different spotting methods on the test set of each corpus. Results tagged with
† and ‡ were presented in [17,16], respectively. Query time (Qtime) is the average
time required to serve an OOV query, expressed seconds.

CS IAM

Method AP mAP Qtime AP mAP Qtime

Naive, unsmoothed recognition-based KWS 37.5 19.2 — 51.3 52.4 —
Unsmoothed Lexicon-based KWS (Sect. 2) 55.6 29.0 — 69.1 68.8 —
Heuristic Line-Level smoothing (Sect. 3.1) † 57.8 † 45.0 0.44 69.8 76.0 8.78
Heuristic Frame-Level smoothing (Sect. 3.2) † 58.8 † 46.7 27.21 70.2 76.1 42.48
Probabilistic Line-Level smoothing (Sect. 3.3) 59.5 46.0 0.52 71.3 76.0 9.96
Lexicon-based + Lexicon-free (Sect. 3.4) 72.5 76.6 39.11 ‡ 76.9 ‡ 82.2 58.16
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On the one hand, observe the low performance of trivial HTR-based KWS applied
to both tasks. This highlights the fact that naively indexing the results of automatic
HTR transcripts is, indeed, not a good idea for handwritten documents.

On the other hand, the baseline unsmoothed lexicon-based KWS approach out-
lined in Sect. 2 does manage to improve the results over the naive approach very sig-
nificantly. However, the results can clearly be improved when the problem entailed
by out-of-vocabulary queries is addressed. This is specially notorious if one looks at
the mAP increase in CS, where the number of relevant OOV events is very signifi-
cant (31%). In general, the smoothing improvements are smaller in IAM, given the
smaller number of relevant OOV events (14%). Clearly, the need of properly dealing
with OOV queries drops as the amount of indexed words becomes large.

Regarding our new Probabilistic Line-Level proposal (see Sect. 3.3), Table 2 shows
that it improves the AP results in both datasets (about 1.7 points of absolute im-
provement), when compared to the line-level method described in Sect. 3.1, while
maintaining similarly low computational costs. This is because the new method suc-
cessfully uses more information from the index: the contribution of all in-vocabulary
keywords is considered, rather of only a maximum.

Moreover, the new approach slightly improves the AP of the method described
in Sect. 3.2 (about 0.9 points of absolute improvement), while requiring much less
computing time (it is about 50 times faster in CS and 4 times faster in IAM). It is
important to notice that the running time of the method of Sect. 3.2 depends not only
on the size of V but also on the average length of the line images. In contrast, the new
method (Sect. 3.3) works directly with lexicon-based indexed relevance probabilities
and do not need the frame-by-frame computation needed to apply Eq. (7-8) for each
i, 1 ≤ i ≤ m, where m is the length (number of frames) of the test images. Finally,
the much larger size of the IAM vocabulary (roughly 10 times larger than that of CS)
and the larger amount of test line images (about twice as many as in CS) explain the
relative computing times needed by the different smoothing methods on both datasets.

It is worth pointing out that the computation of Levenshtein distances has been
done naively in this work, with an asymptotic cost of O(|u| ·L · |V |), where |u| is the
number of query string characters, and L = maxv∈V |v|. Nevertheless, this computa-
tion can be dramatically accelerated by using tries (i.e. prefix trees) for indexing the
vocabulary, or by limiting the maximum number of insertion deletions and substitu-
tions allowed [23].

Finally, we confirm that the combination of a Lexicon-based and a Lexicon-free
(HMM-Filler) methods gives better AP results than any of the other methods consid-
ered, but at a much higher computational cost, even when the fast technique proposed
in [24]) is used. As compared with our new method, the HMM-Filler approach is
more than 75 times slower in CS and 6 times slower in IAM.

Two interplaying factors explain the speed-up differences between the two datasets:
first, the IAM test set is more than twice as large as that of CS, which linearly affects
the query time of all methods. On the other hand, the vocabulary size of IAM is
almost 9 times larger than that of CS, which affects also linearly the computational
costs of the smoothing methods presented in this paper, and thereby increases the cor-
responding differences between CS and IAM. Finally, observe that the HMM-Filler
method is not affected by the vocabulary size (it is a lexicon-agnostic model).
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Figure 3 shows the recall-precision curves obtained for CS and using the plain
lexicon-based KWS approach with no smoothing, and the new probabilistic line-
level smoothing. It clearly shows the significant precision improvement achieved for
high recall, especially for the CS corpus, which explains the corresponding overall
AP improvements reported in Table 2. The lower relative improvement in the IAM
corpus is clearly due to the much smaller proportion of OOV queries, which allows
the unsmoothed lexicon-based approach to provide good results by itself, leaving
little room for improvement by OOV query processing.
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Fig. 3: Recall-Precision curves for CS (left) and IAM (right) using the unsmoothed
lexicon based KWS approach, and the new probabilistic line-level smoothing.

5 Conclusions

We have presented a new method for smoothing the KWS scores given by lexicon-
based systems for handwritten text images, based on the similarity between the OOV
keyword and in-vocabulary words. A detailed comparison of different alternatives
that aim to alleviate the OOV query problem has been also presented.

The new smoothing method gives better results than most of the compared alter-
natives, and it is comparable in speed to the fastest of the previous methods, also
based on string similarity measures. A live demonstration of the KWS approach
used in this paper can be found at http://transcriptorium.eu/demots/demo_
ncaa, supporting the search of OOV keywords using the new technique presented in
Sect. 3.3.

Only the combination of a lexicon-based system and a HMM-Filler surpasses our
new proposal. Nevertheless, it comes at a time cost very much larger than that of
our new proposal, which may result impractical in most real scenarios (even in those
involving data sets as small as the CS corpus).
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In the future, we plan to investigate ways of effectively indexing open-lexicon
character-level KWS scores and combine them with lexicon-based approaches, thus
allowing for faster and more accurate searches for both in-vocabulary and out-of-
vocabulary queries.
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